Notes for New Usars of PCCTS

Thomas H. Moog

Polhode, Inc.
tmoog@pol hode.com

27 March 2000 Release 2.22
PCCTSVersion 1.33MR22

© Copyright 2000 Polhode, Inc. These notes may be redistributed in electronic form or printed for personal use aslong as there
is no charge for them, proper credit is given to the author, any changes to the text are clearly marked, and the copyright and
disclaimer are retained.

Disclaimer: These notes are provided “asis’. They may include typographical or technical errors. The author disclaims al
liability of any kind or nature for damages due to error, fault, defect, or deficiency in the notes regardless of cause. All
warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose are disclaimed.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 1

Whereis
#1. The current maintenance release of PCCTS, these notes, and related examples are available on the net
#2. Some other items available at http://www.polhode.com:
#3. Newsgroup is comp.compilers.tools.pccts. Mailing list is pccts 1-33 at onelist.com.
Basics
#4. Invoke ANTLR or DLG with no arguments to get a switch summary
#5. Tokens begin with uppercase characters, rules begin with lowercase characters
#6. Evenin C mode you can use C++ style commentsin the non-action portion of ANTLR source code
#7. In#token regular expressions spaces and tabs which are not escaped are ignored
#8. Never choose names which coincide with compiler reserved words or library names
#9. Write <<predicate>>? not <<predicate semi-colon>>? (semantic predicates go in "if" conditions)
#10. Some constructs which cause warnings about ambiguities and optional paths
Checklist
#11. Locate incorrectly spelled #token symbols using ANTLR —w2 switch or by inspecting par ser ClassName.cpp
#12. Beconsistent with in-line token definitions: "&&" will not be assigned the same token number as "\ &\ &"
#13. Duplicate definition of a#token name is not reported if there are no actions attached
#14. Use ANTLR option -info o to detect orphan rules when ambiguities are reported
#15. LT(i) and LATEXT(i) are magical hames in semantic predicates — punctuation is critical
#token
#16. To change the token name appearing in syntax error messages: #token ID("identifier") "[az A-Z]+"
#17. To match any single character use: "~[] ", to match everything to anewlineuse: "~[\ n] *"
#18. Tomatchan"@ inyour input text use"\ @ , otherwise it will be interpreted as the end-of-file symbol
#19. The escaped literalsin #token regular expressionsare:\'t \n \r \b (not thesameasANsl C)
#20. In#token expressions "\12" is decimal, "\012" is octal, and "\0x12" is hex (not the same as ANSI C)
#21. DLG wantsto find the longest possible string that matches
#22. When two regular expressions of equal length match aregular expression the first one is chosen
#23. Inlineregular expression are no different than #token statements
#24. Watch out when you see ~[list-of-characters] at the end of aregular expression
#25. Watch out when one regular expression is the prefix of another
#26. DLG isnot ableto backtrack (unlike flex)
#27. Thelexical routines mode(), skip(), and more() are not complicated !
#28. lextext() includes strings accumulated via more() — begexpr()/endexpr() refer only to the last matched RE
#29. Use"if (_lextext !'= _begexpr) {...}"totestfor RE being appended to lextext using more()
#30. #token actions can access protected variables of the DLG base class
#31. When lookahead will break semantic routinesin #token actions, consider using semantic predicates
#32. For 8 bit characters use flex or in bLG make char variables unsigned (g++ option —funsigned-char)
#33. The maximum size of aDLG token is set by an optional argument of the ctor bLGL exer() — default is 2000
#34. If atoken isrecognized using more() and its #lexclass ignores end-of-file then the very last token will be lost
#35. Sometimes the easiest DLG solution isto accept one character at atime.
#tokclass
#36. #tokclass provides an efficient way to combine reserved words into reserved word sets
#37. Use ANTLRParser::set_el() to test whether an ANTLRTokenType isin a#tokclass or #FirstSetSymbol
#tokdef
#38. A #tokdef must appear near the start of the grammar file (only #first and #header may precede it)
#lexclass
#39. Inlineregular expressions are put in the most recently defined lexical class
#40. Useastack of #lexclass modesin order to emulate lexical subroutines
#41. Sometimes a stack of #lexclass modesisn’'t enough
Lexical Lookahead
#42. Vern Paxson'sflex has more powerful features for lookahead than dig
#43. Extralookahead is available from class BufFilel nput (subclass of bLGInputStream)
#44. One extracharacter of lookahead is available to the #token action routinein ch (except in interactive mode)

L R

I NI P

N

aOrRBMDdM|I Ml DOwwnNnmNODN

o1 Ol

o o Ul

~N oo

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22

#45. Thereisno easy way in DLG to distinguish integer "1" from floating point "1." when "1.and.2" isvalid

#46. For lex operators "N and "$" (anchor pattern to start/end of line) use flex - don’t bother with dig
Line and Column Information

#47. 1f youwant column information for error messages (or other reasons) use C++ mode

#48. If you want accurate line information even with many characters of lookahead use C++ mode

#49. Cdl trackColumns() to request that DLG maintain column information

#50. To report column information in syntax error messages override ANTLRParser::syn() — See Example #5

#51. Call newling() and then set_endcol(0) in the #token action when a newline is encountered

#52. Adjusting column position for tab characters

#53. Computing column numbers when using more() with strings that include tab characters and newlines
Ambiguity Aid (options -aa, -aam, -aad

#54. Example with nested if statement

#55. Example with cast expression

#56. Example with ambiguity due to limitations of linear approximation

#57. Summary of command line switches related to ambiguity aid
C++ Mode

#58. The destructors of base classes should be virtual in ailmost all cases

#59. Why must the AST root be declared as ASTBase rather than AST ?

#60. C++ mode makes multiple parsers easy

#61. UseDLGLexerBase routines to savelrestore DLG state when multiple parsers share a token buffer

#62. In C++ mode ASTs and ANTLRTokens do not use stack discipline as they do in C mode

#63. Summary of Token classinheritancein file AToken.h

#64. Diagram showing relationship of major classes

#65. Required AST constructors. AST(), AST(ANTLRTokenPtr), and AST(X x,Y y) for #X X,Y y]

#66. Tokensare supplied as demanded by the parser. They are "pulled” rather than "pushed”

#67. Thelexer can access parser information using member function get Par ser ()

#68. Additiona notes for users converting from C to C++ mode

#69. Usethemacro nyt oken(expr) to convert an ANTLRTokenPtr to an ANTLRTOken *

#70. When using reference counted tokens be careful about saving a pointer generated by ny Token()

#71. LA(i) isacacheof LT(i) valuesused by the parser — itisvalid only fori <k

#72. To disable reference counting of ANTLRTokens use parserName.noGarbageCollectTokens()

#73. For string input use bLGStringl nput (const DLGChar *string) forabpLal nput St ream

#74. Use#l exmenber <<...>>toinsert codeintothe DLGLexer class

#75. Use#l exprefix <<...>>toinsert #i ncl ude statementsinto the bLGLexer file

#76. How to change the default error reporting actions of DLG and ANTLR
ASTs

#77. Toenable AST construction (automatic or explicit) use the ANTLR —gt switch

#78. Use ANTLR option -newAST to make AST creation a member function of the parser

#79. Use symbolic tags (rather than numbers) to refer to tokensand ASTsin rules

#80. Constructor AST(ANTLRTokenPtr) is automatically called for terminals when ANTLR —gt switch is used

#381. If you use ASTsyou haveto passaroot AST to the parser

#82. Use ast—>destroy() to recursively descend the AST tree and free all sub-trees

#383. Don'tconfuse#[...] with#(...)

#34. The make-a-root operator for ASTs (") can be applied only to terminals (#token, #tokclass, #tokdef)

#385. An aready constructed AST tree cannot be the root of a new tree

#386. Don't assign to #0 unless automatic construction of ASTsis disabled using the "!" operator on arule

#387. The statement in Item #86 is stronger than necessary

#388. A rulethat constructs an AST returns an AST even when its caller usesthe"!" operator

#39. (C++ mode) Without ANTLRRefCountToken, atoken whichisn't used in an AST will result in lost memory

#90. Whenpassing#(...) or#[...] toasubroutineit must be cast from "ASTBase *" to "AST *"
#91. Someexamplesof #(. ..) notation using the PcCTs list notation

#92. A rulewhich derives epsilon can short circuit its caller’ s explicitly constructed AST

#93. How to use automatic AST tree construction when atoken code depends on the alternative chosen

10
11
13

17

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22

#94. For doubly linked ASTs derive from class ASTDoublyLinkedBase and call tree—>double_link(0,0)
#95. When ASTs are constructed manually the programmer is responsible for deleting them on rule failure

Rules

#96. Torefer toafield of an ANTLRToken within arule’ sactionuse <<... nytoken($x)->field...>>

#97. Rulesdon't return tokensvalues, thusthiswon'twork: rule: rl:rulel <<...$rl...>>

#98. A simple example of rewriting a grammar to remove left recursion

#99. A simple example of left-factoring to reduce the amount of ANTLR lookahead

#100. ANTLR will guess whereto match "@ if the user omitsit from the start rule

#101. To match any token use the token wild-card expression "." (dot)

#102. The"~" (tilde) operator applied to a#token or #tokclass is satisfied when the input token does not match
#103. To list therules of the grammar grep parserClassName.h for *_root" or edit the output from ANTLR —cr
#104. The ANTLR —gd trace option can be useful in sometimes unexpected ways

#105. Associativity and precedence of operations is determined by nesting of rules

#106. #tokclass can replace arule consisting only of alternatives with terminals (no actions)

18
18

19
19
19
19
20
20
20
20
20
21

#107. Rather than comment out a rule during testing, add a nonsense token which never matches — See Item #110. —

Init-Actions
#108. Don't confuse init-actions with leading-actions (actions which precede arule)
#109. An empty sub-rule can change aregular action into an init-action
#110. Commenting out a sub-rule can change a leading-action into an init-action
#111. Init-actions are executed just oncefor sub-rules: (. . .)+, (...)*,and{.. .}
Inheritance
#112. Downward inherited variables are just normal C arguments to the function which recognizes the rule
#113. Upward inheritance returns arguments by passing back values
#114. Be careful about passing via upward inheritance LT(i)->getText() if using ANTLRCommonToken
#115. ANTLR —gt code will include the AST with downward inheritance values in the rule’ s argument list
#116. Predefine the PURIFY macro if you are passing objects using upward inheritance
Syntactic Predicates
#117. Normal actions are suppressed while in guess mode because they have side effects
#118. Automatic construction of ASTsis suppressed during guess mode because it is a side effect
#119. Syntactic predicates should not have side-effects
#120. How to useinit-actionsto create side-effects in guess mode (despite Item #119)
#121. With values of k>1 or infinite lookahead mode one cannot use feedback from parser to lexer
#122. Can't use interactive scanner (ANTLR —gk option) with ANTLR infinite lookahead
#123. Syntactic predicates are implemented using setjmp/longjmp — beware C++ objects requiring destructors
Semantic Predicates
#124. Semantic predicates have higher precedence than alternation: <<>>? A| Bmeans(<<>>? A)| B
#125. Get rid of warnings about missing LT(i) by usingacomment: / * LT(i) */
#126. It issometime desirable to use leading actionsto inhibit hoisting of semantic predicates
#127. Any actions (except init-actions) inhibit the hoisting of semantic predicates
#128. Semantic predicates that use local variables or require init-actions must inhibit hoisting
#129. Semantic predicates that use inheritance variables must not be hoisted
#130. A semantic predicate which is not at the left edge of arule becomes a validation predicate
#131. Semantic predicates are not always hoisted into the prediction expression
#132. Semantic predicates can't be hoisted into asub-rule: "{ x} y" isnot exactly equivaentto"x y | vy
#133. How to change the reporting of failed semantic predicates
#134. A semantic predicate should be free of side-effects because it may be evaluated multiple times
#135. There' sno simple way to avoid evaluation of a semantic predicate for validation after usein prediction
#136. What isthe "context" of a semantic predicate ?
#137. Use ANTLR option "-info p" for information on how semantic predicates are being handled and hoisted
#138. Semantic predicates, predicate context, and hoisting
#139. Another example of predicate hoisting
#140. Example of predicate hoisting and suppression with the ANTLR option -mrhoist on
#141. Thecontextguard (...)? && <<predicate>>? vs.(...) => <<predi cate>>?

21
22
22
22

22
23
23

23

24
24
24

24

24
24
25
25
25
25

26
26
27
28
29
31

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 4

#142. Experimental ANTLR option -mrhoistk on for suppression of predicates with lookahead depth k> 1 33
#143. Use #pred statement to describe the logical relationship of related predicates 34
#144. Disable predicate hoisting explicitly using the pseudo-action: r ul e: <<; >> <<nohoi st>> ... 34
#145. Simplification of predicate expressions when there are multiple references to predicates 34
Debugging Tips for New Users of rccTs
#146. A syntax error with quotation marks on separate lines means a problem with newline 35
#147. Usethe ANTLR —gd switch to debug viarule trace —
#148. Usethe ANTLR —gs switch to generate code with symbolic names for token tests -
#149. How to track DLG results 35
#150. For complex problems use traceOption and traceGuessOption to control trace output -
Switches and Options
#151. Use ANTLR —gx switch to suppress regeneration of the bLG code and recompilation of DLGL exer.cpp 35
#152. Can't use an interactive scanner (ANTLR —gk option) with ANTLR infinite lookahead -
#153. To make DLG case insensitive use the DLG —ci switch 35
#154. Use ANTLR option -gimsto convert Microsoft file names like "..\foo.g" to "../foo.g" in generated files -
#155. Use ANTLR option -treport number to locate alternatives using alot of CPU time to resolve 35
#156. The ANTLR option -info (p - predicate, t - tnodes, m - monitor, f - follow set, 0 - orphans) 35
Multiple Source Files
#157. To see how to place main() in a.cpp file rather than a grammar file (".g") see pccts./testcpp/8/main.cpp 36
#158. How to put file scope information into the second file of a grammar with two .g files 36
Source Code Format
#159. To placethe C right shift operator ">>" inside an action use "\>\>" 36
#160. One can continue aregular expression in a#token statement across lines (or use flex definitions) 36
#161. A #token without an action will attempt to swallow an action which immediately followsit - use";" 36
Miscellaneous
#162. A grammar may contain multiple start rules. They aren’t declared. -
#163. Givenrul e[A a,B b] > [X x] theprotoisX rul e(ASTBase* ast,int* sig,A a,B b) 37
#164. Toremake ANTLR after changesto the source codeusemake -f makefil el 37
#165. ANTLR reports”... action buffer overflow ..." 37
#166. Exception handling uses status codes and swi t ch statements to unwind the stack rule by rule -
#167. For tokens with complex internal structure add #token expressions to match frequent errors 37
#168. See pccty/testcpp/2/test.g and testcpp/3/test.g for examples of how to integrate non-DLG lexerswith pPcCTs —
#169. Ambiguity, full LL(K), and the linear approximation to LL (k) 37
#170. Ambiguity, #pr agnma, and ANTLR -rl switch (Contributed by John Lilley jlilley@empathy.com) 39
#171. What isthe differencebetween”(...)? <<...>>? x'and"(...)? => <<...>>? X'? 41
#172. Memory leaks and lost resources 41
#173. Some ambiguities can be fixed by introduction of new #token numbers 41
#174. Subclassing DLGInputStream 42
Changes From The Original 1.33 Which Are Not Part of Any Other Section
#175. Use#first <<...>toplacereferencesto precompiled header files at the beginning of generated files —
#176. Use DLGLexerBase::reset() to reset the input stream when parsing the input stream multiple times. -
#177. Error counters are: ANTLRParser::syntaxErrCount and DLGL exerBase::|exErrCount 42
#178. Use"cl ass MyParser : public MyBaseParser ... { "tospecify your own parser base class 42
#179. Use#Fi r st Set Synbol (symbol_name) to generate symbol for first set of an aternative 42
#180. Use- preanbl e and - preanbl e_fi r st toinsert macro code at the start of each rule or block 42
#181. Preprocessor option ZZDEFER FETCH to defer token fetch for C++ mode 42
#182. Exception handling 42
(CMode) LA/LATEXT and NLA/NLATEXT
#183. Do not use LA(i) or LATEXT(i) in the action routines of #token 43
#184. Care must betaken in using LA(i) and LATEXT(i) in interactive mode (ANTLR switch —gk) 43

(C Mode) Execution-Time Routines
#185. Callsto zzskip() and zzmore() should appear only in #token actions (or in subroutines they call)

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22

#186.
#187.
(CMod
#188.
#189.
#190.
#191.
#192.
#193.
#194.
#195.
#196.
#197.
#198.
#199.
(CMod
#200.
#201.
#202.
#203.

Use ANTLRs or ANTLRf in line-oriented languages to control the prefetching of characters and tokens
Saving and restoring parser state in order to parse other objects (input files)

e) Attributes

Use symbolic tags (rather than numbers) to refer to attributes and ASTs in rules

Rules no longer have attributes: rule : rl:rulel <<...%$rl...;>>won'twork

Attributes are built automatically only for terminals

How to access the text or token part of an attribute

The $0 and $$ constructs are no longer supported — use inheritance instead (Item #113)

If you use attributes then define a zzd_attr() to release resources (memory) when an attribute is destroyed
Don't pass automatically constructed attributes to an outer rule or sibling rule — they’ll be out of scope
A charptr.c attribute must be copied before being passed to acalling rule

Attributes created in arule should be assumed not valid on entry to afail action

Use afail action to destroy temporary attributes when arule fails

When you need more information for a token than just token type, text, and line number

About the pipeline between DLG and ANTLR (C mode)

e) ASTs

Define azzd_ast() to recover resources when an AST is deleted

How to place prototypes for routines using ASTsin the #header

To free an AST tree use zzfree ast() to recursively descend the AST tree and free all sub-trees

Use #define zzZAST_DOUBLE to add support for doubly linked ASTs

Extended Examples and Short Descriptions of Distributed Source Code

#1.
#2.
#3.
#4.
#5.
#06.
#7.
#8.
#9.
#10.
#11.
#12.
#13.
#14.
#15.
#16.

DLG definitions for C and C++ comments, character literals, and string literals

A simple floating point calculator implemented using PCCTS attributes and inheritance

A simple floating point calculator implemented using PccTs ASTs and C++ virtual functions

An ANTLRTOken class for variable length strings allocated from the heap

How to extend pccTs C++ classes using the example of adding column information

Use of parser exception handling in C and C++ programs

How to pass whitespace through DLG for pretty-printers

How to prepend a newline to the DLGInputStream via derivation from DLGL exer

How to maintain a stack of #lexclass modes

When you want to change the token type just before passing the token to the parser

Rewriting a grammar to remove left recursion and perform left factoring

Processing counted stringsin DLG

How to convert afailed validation predicate into asignal for treatment by parser exception handling
How to use Vern Paxson’s flex with pCcCTs in C++ mode by inheritance from ANTLRTokenStream
Using the GNU gperf (generate perfect hashing function) with pccTs

Multiple files managed as a single token stream

ERER &8

G&HERR

N
& &

46
46
46

46
46
46
46
46
46
47
47
47
a7
47
48
49
49
49
49

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 1

Mail corrections, suggestions, or comments to tmoog@pol hode.com

Whereis

#1. The current maintenance release of PCCTS, these notes, and related examples are available on the net
Primary Site:

URL: http://www.polhode.com/pccts.html
anonymous ftp: ftp://ftp.enteract.com/users/tmoog

Europe:
anonymous ftp: ftp://ftp.th-darmstadt.de/pub/programming/compil er-compiler/pccts/™
(Thisis updated weekly on Sunday.)
#2. Some other items available at http://www.polhode.com:

Link to the complete and unabridged version of T.J. Parr’s book, Language Translation Using PCCTSand C++.
Link to the source code for the examples from this book.

Example grammars for C++, ANSI C, and Fortran 77. The Fortran 77 grammar (C mode) by Ferhat Hajdarpasic
includes Sorcerer routines.

Log of al changes made as part of the maintenance releases: CHANGES_FROM_133*.TXT.
List of known problems: KNOWN_PROBLEMS.TXT.

#3. Newsgroup is comp.compilers.tools.pccts. Mailing list is peccts 1-33 at onelist.com.

Basics

#4. Invoke ANTLR or DLG with no arguments to get a switch summary
#5. Tokens begin with uppercase characters, rules begin with lowercase characters

#6. Evenin C mode you can use C++ style comments in the non-action portion of ANTLR source code
Inside an action you have to obey the comment conventions of your compiler.

#7. In#token regular expressions spaces and tabs which are not escaped are ignored
This makesit easy to add white space to aregular expression:
#token Synmbol "[a-z A-Z] [a-z A-Z 0-9]*"
#8. Never choose names which coincide with compiler reserved words or library names
Y ou' d be surprised how often someone has done something like one of the following:

#token FILE "file"
#t oken ECF "@
const: "[0-9]*" ;
#9. Write <<predicate>>? not <<predicate semi-colon>>7? (semantic predicates go in "if" conditions)
#10. Some constructs which cause warnings about ambiguities and optional paths
rule : a{ (b]| ¢c)* } ;
rule : a{ b} ;
b (et
rule : a c* ;
a b c
rule : a b

Checklist

cl };

}
|

#11. Locate incorrectly spelled #token symbols using ANTLR —w2 switch or by inspecting parser ClassName.cpp

If a#token symbol is spelled incorrectly ANTLR will assign it a new #token number which, of course, will never be
matched.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 2

#12.
#13.

#14.
#15.

Be consistent with in-line token definitions: "&&" will not be assigned the same token number as "\ &\ &"
Duplicate definition of a#token name is not reported if there are no actions attached

ANTLR will simply use the later definition and forget the earlier one. Using the ANTLR —w2 option does not help
Use ANTLR option -info o to detect orphan rules when ambiguities are reported

LT(i) and LATEXT(i) are magical names in semantic predicates — punctuation is critical

ANTLR wants to determine the amount of lookahead required for evaluating a semantic predicate. It does this by
searching in C++ mode for strings of the form "L T(" and in C mode for strings of the form "LATEXT(". If there
are spaces before the open (" it won’t make amatch. It evaluates the expression following the " (" under the
assumption that it is an integer literal (e.g."1"). If itissomething like"LT(1+i)" then you'll have problems. With
ANTLR switch —w2 you will receive awarning if ANTLR doesn't find at least one LT(i) in a semantic predicate.

#token

#16.

#17.

#18.

#19.

#20.

#21.

#22.

#23.

To change the token name appearing in syntax error messages. #token ID("identifier") "[a-z A-Z]+"
The string appearing inside the parenthesis will be used for the token name in zztokens and _token_tbl
To match any single character use: "~[] ", to match everything to anewlineuse: "~[\ n] *"
Tomatch an"@ in your input text use "\ @ , otherwise it will be interpreted as the end-of-file symbol
The escaped literalsin #token regular expressionsare:\'t \n \r \b (notthesameasANsl C)

In #token expressions "\12" is decimal, "\012" is octal, and "\0x12" is hex (not the same as ANSI C)
Contributed by John D. Mitchell (johnm@jGuru.net).

DLG wants to find the longest possible string that matches

Theregular expression "~[] *" will cause problems — it will gobble up everything to the end-of-file.
When two regular expressions of equal length match aregular expression the first one is chosen

Thus more specific regular expressions should appear in the grammar file before more general ones:
#t oken HELP "hel p" /* shoul d appear before "synmbol" */
#token Synmbol "[a-z A-Z]*" /* shoul d appear after keywords */

Some of these may be caught by using the bLG switch “Wambiguity. In the following grammar the input string
"HELP" will never be matched:

#t oken Wit eSpace "IV Vt]T <<skip();>>
#token |ID "[a-z A-Z] +"
#t oken HELP " HELP"
st at ement
HELP " @ <<prin "token HELP\n"); >> /* al */

tf("t
| "inline" "@ <<printf("token inline\n");>> /* a2 */
| ID"@ <<printf("token ID\n");>> /* a3 */

The best advice may be to follow the practice of TIP: place "#token ID" at the end of the grammar file.
Inline regular expression are no different than #token statements

PCCTS code does not check for amatch to "inling" (Item #22 line a2) before attempting a match to the regular
expressions defined by #token statements. The first two aternatives ("al" and "a2") will never be matched. All of
thiswill be clear from examination of the file "parser.dig" (the name does not depend on the parser’ s class name).

Another way of looking at thisis to recognize that the conversion of character strings to tokens takes place in class
DLGLexer, not class ANTLRParser, and that all that is happening with an inline regular expression isthat ANTLR iS
allowing you to define atoken's regular expression in a more convenient fashion — not changing the fundamental
behavior.

If one builds the example above using the DLG switch -Wambiguity one gets the message:
dl g warni ng: anbi gi ous regul ar expression 3 4

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 3

dl g warni ng: anbi gi ous regul ar expression 3 5

The numbers which appear in the DLG message refer to the assigned token numbers. Examine the array _token_tbl
in parserClassName.cpp to find the regular expression which corresponds to the token number reported by DLG:

ANTLRchar *Parser:: token_tbl[]={

/[* 00 */ "l nvalid",

/[* 01 */ "@,

/[* 02 */ "Whi t eSpace”,
/[* 03 */ "I D',

[* 04 */ "HELP",

/* 05 */ “inline"

1
Well, there is one important difference for those using Sorcerer. With in-line regular expressionsthereisno
symbolic name for the token, henceit can’t be referenced in a Sorcerer rule. Contributed by John D. Mitchell
(johnm@j Guru.com).

#24. Watch out when you see ~[list-of-characters] at the end of aregular expression

What the user usually wants to expressis that the regular expression should stop before the list-of-characters.
However the expression will include the complement of that list as part of the regular expression. Often users
forget about what happens to the characters which are in the complement of the set.
Consider for example a#lexclass for a C style comment:

/* C-style comrent handling */

#1 excl ass COMVENT /[* al */
#token "\ */" << node(START); skip(); >> /[* a2 */
#t oken "~[*]+" << skip(); >> /* a3 */
#token "\ *~[/]" << skip(); >> [/* WRONG */ [* a4 */
/* Should be "*" */ /* a5 */
/* Correction due to Tim Corringham */ /* a6 */
[* ti M@ anj am u-net.com 20-Dec-94 */ [* a7 */

The RE at line a2 accepts "*/* and changes to #lexclass START. The RE at line a4 acceptsa”*" which is not
followed by a"/". The problem arises with comments of the form:

/* this coments breaks the exanple **/
The RE at line a4 consumes the "**" at the end of the comment leaving nothing to be matched by "*/".
Thisisarelatively efficient way to span acomment. However it is not the simplest. A simpler description is:

#t oken "\ */" << node(START); skip(); >> /* bl */
#token "~[1" << skip(); >> [* b2 */

Thisworks because bl ("*/") istwo characters long while b2 is only one character long — and DLG always prefers
the longest expression which matches.

For those who are concerned with the efficiency of scanning:

#t oken "T\n\r]" <<ski p();newine();>>
#t oken M\ k) <<nmode(START) ; ski p(); >>
#t oken A <<skip();>>
#t oken "~[*\n\r]+" <<ski p();>>

Contributed by Brad Schick

#25. Watch out when one regular expression is the prefix of another

If the shorter regular expression is followed by something which can be the first character of the suffix of the longer
regular expression, DLG will happily assume that it islooking at the longer regular expression. See Item #44 for one
approach to this problem.

#26. DLG isnot ableto backtrack (unlike flex)

Consider the following example:

#t oken "IV oNE] T <<ski p();>>
#t oken ELSE "el se"

#token ELSEIF "else [\ \t]* if"

#t oken STOP "stop"

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 4

#27.

#28.

#29.

#30.
#31.

#32.
#33.

#34.

with input:
el se stop

When DLG getsto the end of "else" it realizes that the space will allow it to match alonger string than "else" by
itself. So DLG accept the spaces. Everything isfine until DLG getsto theinitial "s" in "stop". It then realizesit has
no match — but it can't backtrack. It passesback an error status to ANTLR which (normally) prints out something
like:

invalid token near line 1 (text was 'else ")
Thereisan "extra' space between the "else" and the closing single quote mark.

This problem is not detected by the DLG option -Wambiguity.
The section, "Lexical Lookahead" has some additional information.
Thelexical routines mode(), skip(), and more() are not complicated !

All they do is set status bits in a structure owned by the lexical analyzer and then return immediately. Thusitis OK
to call these routines anywhere from within alexical action. You can even call them from within a subroutine called
from alexical action routine.

It is meaninglessto call both more() and skip() in the same action.
lextext() includes strings accumulated via more() — begexpr()/endexpr() refer only to the last matched RE

Use"if (_lextext '= begexpr) {...}"totestfor RE being appended to lextext using more()
To track the line number of the start of alexical element that may span several lines | use the following test:
if (_lextext == begexpr) {startingLine=_line;} [/ user-defined var

#token actions can access protected variables of the DLG base class
When lookahead will break semantic routines in #token actions, consider using semantic predicates

In early versions on PCCTS it was common to change the token code based on semantic routines in the #token
actions.

Old style:

#t oken Typedef Nane
#token ID "[a-z A-Z]*"
<<if (isTypedef Name(lextext)) return Typedef Name; >>

New Style C mode:

#token ID "[a-z A-Z]*"
t ypedef Nane : <<i sTypedef Nane(LA(1)->get Text ())>>? ID;

The old technique is appropriate for making lexical decisions based on the input: for instance, treating a number
appearing in columns 1 through 5 as a statement label rather than a number. The new styleisimportant because of
the buffer between the lexer and parser introduced by large amounts of lookahead, especially syntactic predicates.
For instance a declaration of atype may not have been entered into the symbol table by the parser by the time the
lexer encounters a declaration of avariable of that type. An extreme case isinfinite lookahead in C mode: parsing
doesn’t even begin until the entire input has been processed by the lexer. See Item #138 for an extended discussion
of semantic predicates. Example #10 shows how some semantic decisions can be moved from the lexer to the token
buffer.

For 8 bit characters use flex or in DLG make char variables unsigned (g++ option —funsigned-char)
The maximum size of aDLG token is set by an optiona argument of the ctor bLGL exer() — default is 2000

The maximum size of a character string stored in an ANTLRToken is independent of the maximum size of aDLG
token. See Item #60.

If atoken isrecognized using more() and its #lexclass ignores end-of -file then the very last token will be lost

When atoken is recognized in several pieces using more() it may happen that an end-of-file is detected before the
entire token is recognized. Without treatment of this special case the portions of the token already recognized will
be ignored and the error of alexically incomplete token will be ignored. Since all appearances of the regular
expression " @", regardless of #lexclass, are mapped to the same #token value, proper handling requires some work-

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 5

#35.

arounds.

Suppose one wants to recognize C style comments using:

#1 excl ass START
#t oken Comment Begin "/*" <<skip(); node(LC Coment); nore();>>
#t oken Eof "@

#|1 excl ass LC_Coment

#t oken Unexpected_Eof "@ <<node(START) ; >>

#t oken Conmment _End "*/" <<skip();node(START) ; >>
#t oken "~[1" <<skip();>>

The token code "Unexpected Eof" will never be seen by the parser. The result isthat C style comments which omit
thetrailing "*/" can swallow al the input to the end-of-file and not give any error message. My solution to this
problem isto fool PcCTs by using the following definition:

#t oken Unexpected_Eof " @@ <<node(START) ; >>

This exploits a characteristic of DLG character streams. once they reach end-of-file they must return end-of-file to
every request for another character until explicitly reset.

Another example of this pitfall, is the recognition of unterminated C style strings at the end of afile.
Sometimes the easiest DLG solution is to accept one character at atime.
One example is the processing of Fortran style Hollerith constants. See Example #12.

Another example is recognizing radix expressions such as 2#1011 or 16#ffff. Given that the radix can vary between
2 and 36 the easiest way to handleit isto save the radix and then change to another # exclass where the digits can be
inspected one by one. Another alternativeis to accept the entire string and then check all the characters at one time.

#tokclass

#36.

#37.

#tokclass provides an efficient way to combine reserved words into reserved word sets

#t oken Read "read"

#t oken Wite "wite"

#t oken Exec "exec"

#t oken I D "[a-z A-Z] [a-z AAZ 0-9 \@*"
#t okcl ass Any {ID Read Wite Exec}

#t okcl ass Verb {Read Wite Exec}
command: Verb Any ;

Use ANTLRParser::set_el() to test whether an ANTLRTokenTypeisin a#tokclass or #FirstSetSymbol
To test whether atoken "t" isin the #tokclass "Verb":

if (set_el(t->getType(),Verb_set)) {...}
There are several variations of thisroutine in the ANTLRParser class.

#tokdef

#38.

A #tokdef must appear near the start of the grammar file (only #first and #header may precede it)

#lexclass

#39.

Inline regular expressions are put in the most recently defined lexical class

If the most recently defined lexical classisnot START you may be surprised:
#l excl ass START

#1 excl ass LC_Conment

inli ne_exanpl e: synmbol "=" expression ;
Thiswill place"=" in the #lexclass LC_Comment (where it will never be matched) rather than the START #lexclass

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 6

#40.

#41.

where the user meant it to be. Sinceit is okay to specify a#lexclassin severa piecesit might be a good ideawhen
using #lexclassto place "#lexclass START" just before the first rule — then any inline definitions of tokens will be
placed in the START #lexclass automatically:

#l excl ass START
#I éxcl ass COVWWENT
#i éxcl ass START

Use a stack of #lexclass modes in order to emulate lexical subroutines

Consider agrammar in which lexical elements have internal structure. An example of thisis C strings and character
literals which may contain elements like:

escaped characters \" and \'
symbolic codes \ 't
numbers \xff V200 \O

Rather than implementing a separate #lexclass to handle these sequences for both character literals and string literals
it would be possible to have a single #l exclass which would handle both. To implement such a scheme one needs
something like a subroutine stack to remember the previous #lexclass. See Example #9 for a set of such routines.

Sometimes a stack of #lexclass modesisn’t enough

Consider alog file consisting of clauses, each of which has its own #lexclass and in which a given word is reserved
in some clauses and not others:

#1; 1- JAN- 94 01: 23: 34; enabl e; forge bell ows al arm nove to station B;

#2;1- JAN- 94 08: 01: 56; operator;john bellows;shift change at 08: 00;

#3; 1- JAN-94 09:10: 11; nove; ol d pos=5.0 new pos=6. 0; operator request;

#4; 1- JAN-94 10: 11:12; al arm bel | ows; 2- JAN- 94 00: 00: 01;
If theitem isterminated by a separator then there is a problem because the separator will be consumed in the
recognition of the most nested item — with nothing left over to be consumed by other elements which end at the
separator. The problem appears when it is necessary to |eave a#lexclass and return more than onelevel. To be
more specific, a#token action can only be executed when one or more characters are consumed — so to return
through three levels of #lexclass calls would appear to require the consumption of at least three characters. Inthe
case of balanced constructslike”. .. " and '..." thisisnot aproblem since the terminating character can be
used to trigger the #token action. However, if the scan is terminated by a separator such as the semi-colon above
(";™), one cannot use the same technique. Once the semi-colon is consumed it is unavailable for the other #lexclass
routines on the stack to see.

One solution is to allow the user to specify (during the call to pushMode) a"lookahead" routine to be called when
the corresponding element of the mode stack is popped. At that point the "lookahead" routine can examinech to
determine whether it also wants to pop the stack, and so on up the mode stack. The consumption of asingle
character can result in popping multiple modes from the mode stack based on a single character of lookahead.

For anything more complicated than this and you might as well write a second parser just to handle the so-called
lexical elements.

Continuing with the example of the log file (above): each statement type hasitsfields in a specific order. When the
statement type is recognized, apointer is set to alist of the #lexclasses which isin the same order as the remaining
fields of that kind of statement. An action is attached to every #token which recognizes a semi-colon (*;") advances
apointer in the list of #lexclasses and then changes the #lexclass by calling mode() to set the #lexclass for the next
field of the statement.

Lexical Lookahead

#42.

Vern Paxson’s flex has more powerful features for lookahead than dig

Flex isasuperset of lex. For an example of how to use flex with ANTLR in C++ mode see Example #14. For C
mode download http://www.polhode.com/NOTES.flex.

Extralookahead is available from class BufFilelnput (subclass of DLGInputStream)

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 7

#46.

Alexey Demakov has supplied this class to provide more than one character of lookahead for the input stream. The
classislocated in pccts/h/BufFilel nput.*.

One extra character of lookahead is available to the #token action routine in ch (except in interactive mode)

In interactive mode (DLG switch —i is hot supported in C++ mode) DLG fetches a character only when it needs it to
determine if the end of atoken has been reached. In non-interactive mode the content of ch isalwaysvalid. The
debug code described in Item #149 can help debug problems with interactive |ookahead.

For the remainder of this discussion assume that DLG isin non-interactive mode.
Consider the problem of distinguishing floating point numbers from range expressions such as those used in Pascal:
range: 1..23 float: 1.23

Asafirst effort one might try:

#t oken Int "[0-9] +"

#t oken Range oL

#t oken Fl oat "[0-9]+.[0-9]*"
The problem isthat "1..23" looks like the floating point number "1." with anillegal "." at the end. DLG alwaystakes
the longest matching string, so " 1." will always ook more appetizing than "1". What one needsto do isto look at

the character following "1." to seeif itisanother ".", and if it isto assume that it is arange expression. The flex
lexer hastrailing context, but DLG doesn't — except for the single character inch.

A solution in DLG isto write the #token Float action routine to look at what's been accepted, and at ch, in order to
decide what to do:

#t oken Fl oat "[0-9]*.[0-9]*"
<<if (*endexpr() =="'.' & & /* mght use nmore conpl ex test */
c == "'
node(LC_Range) ; /* treat it like a range expression */
return Int; /* looks like an int followed by ".." */
1
>>
#1 excl ass LC _Range
#t oken Range L <<nmode(START) ; >> [/ consune second "." of range

Thereisno easy way in DLG to distinguish integer "1" from floating point "1." when "1.and.2" isvalid

This differs from Item #44 in that two characters of lookahead are required before a decision can be made on
whether the "." is part of ".and." or itispart of afloating point number. Thisis afrequent problem which can only
be handled by using a more powerful lexer such as flex.

For lex operators " and "$" (anchor pattern to start/end of line) use flex - don’t bother with dig

Line and Column Information

Most names in this section refer to members of class DLGL exerBase or DLGL exer

Before C++ mode the proper handling of line and column information was alarge part of these notes.

H#AT.
#48.
#49.
#50.
#51.
#52.

If you want column information for error messages (or other reasons) use C++ mode

If you want accurate line information even with many characters of lookahead use C++ mode

Call trackColumns() to request that DLG maintain column information

To report column information in syntax error messages override ANTLRParser::syn() — See Example #5
Call newline() and then set_endcol (0) in the #token action when a newline is encountered

Adjusting column position for tab characters

Assume that tabs are set every eight characters starting with column 9.

Computing the column position will be simpleif you match tab charactersin isolation:
#t oken Tab "\t" <<_endcol =((_endcol -1) & ~7) + 8;>>
Thiswould be off by 1, except that DLG, on return from the #token action, computes the next column using:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 8

_begcol =_endcol +1;
If you include multiple tabs and other forms of whitespace in a single regular expression, the computation of
_endcol by bLG must be backed out by subtracting the length of the string. Then you can compute the column
position by inspecting the string character by character.

#53. Computing column numbers when using more() with strings that include tab characters and newlines

/* what is the colum and |ine position when the conment includes
or is followed by tabs tab tab */ tab tab i ++;

Note: This code excerpt requires a change to pccTs 1.33 file pccts/dig/output.c in
order to inject code into the DLGL exer class header. The modified source codeis
distributed as part of the notesin file notes/changes/dlg/output.c and output_diff.c. An
example of itsuse is given in Example #7.

My feeling is that the line and column information should be updated at the same time more() is called because it
will lead to more accurate position information in messages. At the same time one may want to identify thefirst
line on which a construct begins rather than the line on which the problem is detected: it's more useful to know that
an unterminated string started at line 123 than that iswas still unterminated at the end-of-file.

voi d DLGLexer::tabAdjust () { /'l requires change to output.c
char * p; /1 to add user code to DLG.exer
if (_lextext == _begexpr) startingLi neFor Token=_Ii ne;

_endcol =_endcol - (_endexpr-_begexpr)+1; // back out DLG conputation
for (p=_begexpr;*p != 0; p++) {

if (*p =="'\n") { /1 newline() by itself
new i ne(); _endcol =0; /1 doesn’'t reset colum
} else if (*p =="\t")
_endcol =((_endcol -1) & ~7) + 8§; /1 traditional tab stops
_ehdcol ++;
I
_endcol --; /1 DLG will compute begcol =endcol +1

}

See Example #7 for amore compl ete description.

Ambiguity Aid (options -aa, -aam, -aad

#54. Example with nested if statement
Consider the timeless and eternal beauty of the nested if statement:

st i f _stm [* 1 */
| assign_stnt [* 2 */

: [* 3 */

if_stnt . | F expr [* 4 */
THEN st nt /* 5 */

{ ELSE stnt } /* 6 */

; [* 7 */

assign_stnt : expr EQUAL expr SC ; [* 8 */
expr . E; /[* 9 */

Thiswill be ambiguous regardiess of the value of k and ck chosen. When analyzed with -k 1 and -ck 1 ANTLR will

report:
ifstnm.g(6) : warning: alts 1 and 2 of {...} anbiguous upon { ELSE }
We can specify the ambiguity of interest using aline number or rule name:

antlr ifstnt.g -aa if_stm # invoked usingarule name
antlr ifstn.g -aa 6 # invoked using a line number

The output is:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22

Ambi guity Ad (-ck 1 -aa if_stnt -aad 1)
This identifies the command line options relevant to the ambiguity analysis.

Choice 1. if_stnt/3 line 6 fileifstm.g

Choice 2: if_stnt/3 line 6 file ifstn.g

Choice 1 and Choice 2 are the two alternatives that have ambiguous prediction
expressions. In this case, both choices are on line 6 of the file and the third line of
ruleif_stmt (i.e. if_stmt/3).

ntersecti on of | ookahead[1l] sets:

ELSE
The intersection of the lookahead setsis simply a restatement of the ambiguity set, but
in an easier to read format. The number of sets should be equal to the -ck value. In
this example, the ck value is 1 and there is only one such set. If the intersection were
empty then there would be no ambiguity and no need for an ambiguity report.
Choice:1 Depth:1 Goup:1 (ELSE)
Choice 1: Thisisatraceback of one way one might run across the token ELSE.
1 #token ELSE if_stnt/3 line 6 ifstnt.g
Sarting from line 6 one can easily find an ELSE by flowing into the optional element
of theif_stmt ("{ ELSE stmt }"). The expression "if_stmt/3" saysthat thisison the
third line of the rule "if_stmt".
Choice:2 Depth:1 Goup:2 (ELSE)
Choice 2: Thisisa traceback of another way one might run across the token ELSE.
The ambiguity exists because there are two such paths. Sometimes| find it easier to
work from the bottom to the top, other times from the top to the bottom. In this case
I'll work fromitem 1toitem4.
1 endif_stn if_stnt/4 line 7 ifstm.g
Item 1. Instead of flowing forward into the optional ELSE block (as with choice 1) we
pass over it and flow off the end of the if_stnmt (hence "end if_stmt") at line 7. Thuswe
have an if_stmt with no ELSE clause.
IF el THEN s1
2 end st stm/3 line 3 ifstnt.g
Item2: Theif_stmt (item 1) wasreferenced from stmt at line 3. The use of line 3is
confusing. The line number is 3 because we have flowed out of theif_stmt at line 1
and out of the implicit and invisible block which encloses the top level alternatives of a
rule. It isasthough the rule has been written:
stmt: (if_stmt
| assign_stmt
)
3in{...} block if_stm/3 line 6 ifstnt.g
Item 3: After flowing out of the stmt mentioned in item 2 we find our selves entering
the{...} blockinif_stmt at line 6. The only way to flowinto the{...} block online6is
by flowing out of the THEN clause on line 5. Recall that we have just flowed out of an
if_stmt that had no ELSE clause (item 1). Thus we now have something like this:
IF e2 THEN | F el THEN s1 ...
where the underline identifies an inner if_stmt fromitem 1.
4 #token ELSE if stnt/3 line 6 ifstnt.g
Item4: Initem 3 we flowed into the{...} clause on line 6. We have now found the
EL SE token at the start of the {...} clause. Thus we now have something that like this:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 10

IF e2 THEN | F el THEN s1 ELSE ...
where the underline identifies an inner if_stmt fromitem 1.

Thisisnot terribly clear, so let’ s review the data and try to understand what the ambiguity aid istrying to say. When
we are ready to recognize the EL SE there must be two plausible derivations for the ELSE token. Thefirst oneisthe
obvious one: the ELSE is part of theif_stmt being parsed. The second choice, the difficult one, arises when thereis
no ELSE clause for an if_stmt. Looking at

IF e2 THEN | F el THEN s1 ELSE ...

with this hint and some thought we should be able to recognize that the EL SE can be interpreted as part of the
underlined statement (choice 1) or as part of the non-underlined statement (choice 2).

| admit that thisisfar fromideal. However, | have found this an immense aid in trying to identify the source of an
ambiguity in large grammars which may require dozens of rulesto be examined in order to discover that rule g can
follow rule f when rule f appears at the end of e, when e appears at the end of d, etc.

#55. Example with cast expression

This example illustrates the use of the -aad option which controls the number of lookahead tokens to match. The
ambiguity aid first reports on the choices which match just one token, then on the choices which match the second
token, and so on until the number of tokens specified by the -aad option is reached.

This ambiguity in this exampleis simple to diagnose without any aid, but | think it has educational value.

exprl : expr2 { EQEQ expr2 } ; [* 1 */
expr2 : expr3 (ADD OP expr3)* ; [* 2 */
expr3 : exprd4 (MIL_OP exprd)* ; [* 3 */
exprd : expr5 [* 4 */
| LP 1d RP expr5 [* 5 *f

; /[* 6 */

expr5 : Id [* 7 */
Nurber [* 8 */

| LP exprl RP [* 9 */

; /[* 10 */

When run with -ck 2 ANTLR reports:
paren.g(4) : warning: alts 1 and 2 of the rule itself
anbi guous upon { LP}, { 1d}
To diagnose this problem we use the command:
antlr paren.g -ck 2 -aa 4 -aad 2 # ambiguity on line 4, match two tokens
The output is:

Ambiguity A d (-ck 2 -aa 4 -aad 2)
Choice 1: expr4/1l line 4 file paren.g
Choice 2: expr4/?2 line 5 file paren.g

The ambiguity is a choice between line 4 (expr5) and line5 (LP IdRP ...)
Intersection of | ookahead[1l] sets:

LP
I ntersection of |ookahead[?2] sets:
Id

Choice:1 Depth:1 Goup:1l (LP)
Thefirst choice at depth 1 starts at line 4 (item 1) and flows into expr5 (items 1 and
2). Onceinside expr5 (item 2) we find the token LP (item 3).

1 to expr5 expré/ 1 line 4 paren.g
2 expr5 expr5/1 line 7 paren. g
3 #token LP expr5/ 3 line 9 paren. g

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 11

Choice:2 Depth:1 Goup:2 (LP)
The second choice at depth 1 starts at line 5 and immediately finds the LP (item 1).
1 #token LP expr4/ 2 line 5 paren. g

Choice:1 Depth:2 Goup:3 (LP Id)
We are back with choice 1, but the depth isnow 2, so it triesto match the ld in
lookahead set 2. We start at line 4 (item 1) and flow into expr5 (items 1 and 2). In
expr5 at line 7 we match the LP (item 3). Still within expr5 we flow into exprl (item
4). Fromexpr 1 we flow into expr 2 (items6 and 7). This continues until we reach
item 14 which contains an ID from expr5.

1to expr5 expr4/ 1 line 4 paren. g
2 expr5 expr5/1 line 7 paren. g
3 #token LP expr5/ 3 line 9 paren.g
4 to exprl expr5/ 3 line 9 paren. g
5 exprl exprl/1 line 1 paren.g
6 to expr2 exprl/1 line 1 paren.g
7 expr2 expr2/1 line 2 paren. g
8 to expr3 expr2/1 line 2 paren.g
9 expr3 expr3/1 line 3 paren.g
10 to expr4 expr3/1 line 3 paren. g
11 expr4 expr4/1 line 4 paren.g
12 to expr5 expré/ 1 line 4 paren.g
13 expr5 expr5/1 line 7 paren. g
14 #token |d exprb/1 line 7 paren.g

Choice:2 Depth:2 Goup:4 (LP Id)
The second choice at depth 2. Thisisa trivial match to LP followed by Id.

1 #token LP expr4/ 2 line 5 paren.g
2 #token Id expré4/ 2 line 5 paren.g

This demonstrates how the ambiguity aid reports a chain of rule references.
#56. Example with ambiguity due to limitations of linear approximation

The exampleillustrates an ambiguity which is due solely to the limitations of linear |ookahead:
rab : */
| *
; */
. */
*/
: */
| */
; */
When analyzed with -k 2 there is no ambiguity, but with -k 1 and -ck 2 ANTLR reports:
|l ook.g(1l) : warning: alts 1 and 2 of the rule itself
anbi guous upon { J }, { X}
To someone unfamiliar with linear lookahead, the problem is not obvious. Given the lookahead Jfollowed by X
surely the choiceis obvious ? How does ambiguity aid help ?

Q
x G < oo
XT X
* ok ok Ok k F
O~NOOUOITRWNE

e

We run the ANTLR ambiguity aid with depth 2 because the ambiguity involves two tokens of lookahead:
antlr look.g -aa rab -aad 2
The output is:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 12

Ambi guity Ad (-ck 2 -aa 1 -aad 2)
Choice 1: rab/1 line 1l file look.g
Choice 2: rab/2 line 2 file look.g
Intersection of |ookahead[1l] sets:

J
I ntersection of |ookahead[2] sets:

X

Choice:1 Depth:1 Goup:1l (J)
Thisisat depth 1 (match J, the first token,). Thefirst choice starts at line 1 and flows
intoruleaat line4 (items 1 and 2). It matchesJ at line 4.

l1toa rab/1 line 1 | ook. g
2 a all line 4 | ook. g
3 #token J all line 4 | ook. g

Choice:2 Depth:1 Goup:2 (J)
Thisisat depth 1 (match J, the first token). The second choice starts at line 2 and
flowsintoruleb at line 6 (items 1 and 2). It matches J at line 6.

ltob rab/2 line 2 | ook. g
2 b b/ 1 line 6 | ook. g
3 #token J b/ 1 line 6 | ook. g

Choice:1 Depth:2 Goup:3 (J X
Choice 1 at depth2 finds a match to the second token of lookahead (X) at line 4 of rule
a. Note that it follows the same path of references as choice 1 at depth 1.

l1toa rab/1 line 1 | ook. g
2 a all line 4 | ook. g
3 #token J all line 4 | ook. g
4 #token X all line 4 | ook. g

Choice:2 Depth:2 Goup:4 (KX
Choice 2 at depth 2 finds a match to the second token of lookahead (X) at line 7 of rule
b. Note that the first lookahead token is not J, but K. Nonetheless, this explains why
thereisa collision for X which prevents linear |ookahead from resolving the

ambiguity.
ltob rab/2 line 2 | ook. g
2 b b/ 1 line 6 | ook. g
3 #token K b/2 line 7 | ook. g
4 #token X b/2 line 7 | ook. g

The search at depth 1 shows how both alternatives find the token Jin the first token lookahead set. The search at
depth 2 shows how both alternatives find the token X in the second token lookahead set.

When ambiguity aid is enabled and an ambiguity isfound in arule or line number that matches the command line
argument the ambiguity aid routine traverses the rules using the same routines which compute first sets. It searches
for tokens which appear in the ambiguity set with appropriate depth. When it finds a match it reports the chain of
rules that were traversed to reach the point at which the match occurs.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 13

#57.

Summary of command line switches related to ambiguity aid

The ambiguity aid is controlled by the following command line options:
-aaruleName Selects reporting by name of rule
-aalineNumber Selects reporting by line number (the file name is not used).
-aad depth Selects the depth of the search. The default valueis 1.

The number of paths to be searched, and the size of the report can grow geometrically with the -ck value
if afull search for al contributions to the source of the ambiguity is explored. The depth represents the
number of tokens of lookahead which are matched against the sets of ambiguous tokens. A depth of 1
means that the search stops when alookahead sequence of just one token is matched.

A k=1 ck=6 grammar might generate 5,000 itemsin areport if afull depth 6 search is made with the
ambiguity aid. The source of the problem may be in the first token and obscured by the volume of data -
| hesitate to call it information.

When the user selects adepth > 1, the search isfirst performed at depth=1 for both alternatives, then
depth=2 for both alternatives, etc.

-aam Enables"multiple" reporting for atoken in the intersection set of the alternatives. The default is"off".

A given token may appear dozens of times in various paths as the program explores the rules which are
reachable from the point of an ambiguity. With option -aam every possible path the search program
encountersis reported.

Without -aam only the first encounter isreported. This may result in incomplete information, but the
information may be sufficient and much shorter.

C++ Mode

#58.

#59.

The destructors of base classes should be virtual in almost all cases
If you don’t know why you should read Scott Meyers' excellent book, "Effective C++, Fifty Specific Ways...".
Why must the AST root be declared as ASTBase rather than AST ?

The functions which implement the rules of the grammar are declared with the prototype:
voi d aRul e(ASTBase ** _root) {...};

The underlying support code of ANTLR depends only on the behaviors of ASTBase. There are two virtuesto this
design:

No recompilation of the underlying routines is necessary when the definition of AST changes

The same object code can be used with multiple parsers in the same program each with its own kind of AST
Thisisin contrast to C++ templates which are designed to provide source code reuse, not object code reuse.
An"AST *" can be passed to an "ASTBase *" why not an "AST **" for an "ASTBase **" ?
ThisisaC++ FAQ. Consider the following (invalid) code fragment:

struct B {}; /[* al */
struct D1 : B {int i;}; /[* a2 */
struct D2 : B {double d;}; /* a3 */
void func(B ** ppB) {*ppB=new D2;}; /* WWRONG */ [* a4 */
D1 * pDl=new D1, /[* a5 */
func(&pD1); /* a6 */

At line ab, pD1isdeclared to be apointer toaD1. Thispointer ispassed to "func" at linea6. The function body at
line a4 replaces a pointer to a D1 with a pointer to a D2, which violates the declaration at line ab.
The following islegal, although it may not do what is expected:
void func2(B * pB) {Dl di; *pB=di;}; [* bl */
func2(pDl); /* b2 */
The assignment at line b1 slices d1 and assigns only the B part of d1 to the object pointed to by pB because the
assignment operator chosen isthat of class B, not class D1.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 14

#60. C++ mode makes multiple parsers easy
pcctstestepp/Sitest.g Uses multiple instances of a single parse class (thus a single grammar)
pcctstestcpp/6/main.cpp Program uses parsers for two different grammars (test.g and test2.g)
If two parsers share the same DLG automaton it may be necessary to save DLG state. See Item #61.
#61. Use DLGLexerBase routines to save/restore DLG state when multiple parsers share a token buffer
When the second parser "takes control" the bLGLexer doesn’t know about it and doesn’t reset the state variables
such as #lexclass, line number, column tracking, etc.
Use DLGL exerBase::saveState (DLGState *) and restoreState(DLGState *) to save and restore DLG state.
#62. In C++ mode ASTs and ANTLRTokens do not use stack discipline as they do in C mode
In C mode ASTs and attributes are allocated on astack. Thisisan efficient way to allocates space for structsand is
not a serious limitation because in C it is customary for a structure to be of fixed size. In C++ mode it would be a
serious limitation to assume that all objects of a given type were of the same size because derived classes may have
additional fields. For instance one may have a"basic" AST with derived classes for unary operators, binary
operators, variables, and so on. Asaresult the C++ mode implementation of symbolic tags for elements of therule

uses simple pointer variables. The pointers are initialized to 0 at the start of the rule and remain well defined for the
entirerule. Thethingsthey point to will normally remain well defined, even objects defined in sub-rules:

rule ! : a:rule2 {b:B} <<#0=#(#a,#[$b]);>> ; // Konly in C++ node
Thisfragment is not be well defined in C mode because "B" would become undefined on exit from"{. . . }".
#63. Summary of Token classinheritancein file AToken.h

ANTLRADbstractToken — (empty class) virtua table
|

Y
+- - ANTLRRef Count Token —(reference counter) virtual table
|
\Y,
+- - ANTLRConmonRef Count Token —(token type, text, line) virtual table
using variable length text fields
+- - ANTLRCommonNoRef Count Token - (token type, text, line) virtual table
using variable length text fields
+-- MyToken —(token type, text, line, ...) virtual table

Exanpl es:
NoLeakToken. h
Si npl eToken. h
not es/ cal cAST/ nunifoken. h - nuneric field
not es/ col / myToken. h —variable length text with colum info

#64. Diagram showing relationship of major classes

ANTLRTokenSt r eam
(ATokenSt ream h)
|

V
ANTLRPar ser --> ANTLRTokenBuffer --> DLG.exerBase ---> DLA nput Stream
(APar ser. h) (ATokenBuf fer. h) (DLexer Base. h) | (DLexer Base. h)
| | | |
| V \Y +- DLGFi | el nput
| MyTokenBuf f er DLG.exer |
| (ANTLR generated) |
V +- DLGSt ri ngl nput
MyPar ser (generated by ANTLR fromnyFile. Q)
MyPar ser . h (cl ass header)
MyPar ser. cpp (static variable initialization)
myFil e.cpp (i mpl emrentati on code for rules)

#65. Required AST constructors: AST(), AST(ANTLRTokenPtr), and AST(X x,Y y) for #{X x,Y y]

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 15

#66. Tokens are supplied as demanded by the parser. They are "pulled" rather than "pushed"

ANTLRPar ser: : consune()

--> ANTLRTokenBuf f er: : get Token()

--> ANTLRTokenBuf f er: : get ANTLRToken()

--> DLGLexer: : get Token()

--> MyToken: : makeToken(ANTLRt okenType, | exText, | i ne)

#67. Thelexer can access parser information using member function get Par ser ()
The member functions ANTLRT okenBuffer::getParser() and DLGL exerBase::getParser() return a pointer to the

current parser.
#68. Additional notes for users converting from C to C++ mode
In general: Zzname => name, _hame, or name()
example: zzl ext ext => |extext, | extext()
except for: zzchar => ch
In DLGLexerBase: NLA=t okenCode => return tokenCode
line++ => new i ne()
I i ne=val ue => |ine=val ue
and => set _|ine(val ue)
set_ling() isnot available in vanilla 1.33
zzt okensJi] => parserClassName: : t okenNare(i)
and => get Parser () - >par ser TokenName(i)

tokenName() is not available in vanilla 1.33
parser TokenName is not available in vanilla 1.33

zzendcol => _endcol ,set_endcol (),get _endcol ()
zzbegcol => begcol ,set_begcol (),get _begcol ()

#69. Usethemacro nyt oken(expr) to convert an ANTLRTokenPtr to an ANTLRTOken *
#70. When using reference counted tokens be careful about saving a pointer generated by my Token()

Reference counted tokens are deall ocated when the reference count maintained by ANTLRTokenPtr reaches zero.
Saving a pointer generated by myt oken() subvertsthe reference counting scheme because the referenceis not

counted. If such a pointer were stored in an AST it islikely that the token will soon be deallocated leaving you with

apointer to garbage.
#71. LA(i) isacacheof LT(i) valuesused by the parser — itisvalidonly fori <k
Contributed by John Lilley (jlilley@empathy.com)
#72. To disable reference counting of ANTLRTokens use par ser Name.noGarbageCollectTokens()
#73. For string input use bLGStringl nput (const DLGChar *string) forabpLal nput St ream
#74. Use#l exnenber <<...>>toinsert codeintothe DLGLexer class
#75. Use#l exprefix <<...>>toinsert #i ncl ude statementsinto the bLGL exer file
#76. How to change the default error reporting actions of DLG and ANTLR

For DLG:
#1 exmenber <<
virtual ANTLRTokenType erraction() {

Your error action goes here.
Normally you' [l want to end by calling the standard action:

return DLGLexerBase::erraction();

b

>>

For ANTLR, start by adding a virtual member function "syn" to your parser:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 16

ASTs

cl ass MyParser {

<< public:
virtual void syn(

ANTLRADbst r act Token * t ok,
ANTLRChar * egroup,
Set Wor dType * eset,
ANTLRTokenType et ok,
i nt K);

>>

}

The actual error recovery code for ANTLR israther long. For an example of adding column information to the
syntax error message see Example #5.

#17.
#78.

To enable AST construction (automatic or explicit) use the ANTLR —gt switch
Use ANTLR option -newAST to make AST creation a member function of the parser

This allows a user to define a parser member function to create an AST object. Thisisuseful for factory methods
and cases where the AST are "owned" by a particular instance of a parser.

Standard AST constructors ANTLR -newAST option AST
Automatic conversion of token new AST(ANTLRTokenPtr) newAST(ANTLRTokenPt r)
Manual construction: #(X, Y, Z) => new AST(X Y, 2) #(X, Y, 2Z) => newAST(X, Y, 2)
#79. Use symbolic tags (rather than numbers) to refer to tokensand ASTsin rules
prior to version 1.30: rule! : xvy <<#O=#(#1, #2); >> ;
with version 1.30: rule!l : xx:x yy:y <<H#O=H#(#xX, #yy); >> ;

#80.

#81.

#82.
#83.

The symbolic tags are implemented as pointersto ASTs. The pointers areinitialized to O at the start of the rule and
remain defined for the entire rule. See Item #62. Rules no longer return pointers to tokens (Item #97

Constructor AST(ANTLRTokenPtr) is automatically called for terminals when ANTLR —gt switch is used
This can be suppressed using the "!" operator.

If you use ASTsyou have to pass aroot AST to the parser
ASTBase *r oot =NULL,;

Par ser . st art Rul e(& oot , ot her Argunent s) ;
r oot - >preorder ();
root - >destroy();

Use ast—>destroy() to recursively descend the AST tree and free all sub-trees

Don't confuse#[.. .] with#(...)

Thefirst creates asingle AST node using an AST constructor (which is usually based on an ANTLRToken or an
ANTLRTokenType). It convertslexical information to an AST.

The second creates an AST tree or list (usually more than a single node) from other ASTs by filling in the "down"
field of the first node in the list to create aroot node, and the "sibling” fields of each of the remaining ASTsin the
lists. It combines existing ASTsto create a more complex structure.

#t oken I D "[a-z] *"

#t oken COLON o

#t oken Stmt_Wth_Label

id : nane:ID <<#O=#[Stmt _W th_Label, $nane->get Text()];>> ; /* al */

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 17

#85.

#86.

#87.

#88.
#89.

#90.

The new AST (asingle node) contains Stmt_With_Label in the token field — given atraditional version of
AST::AST(ANTLRTOkenType,char *).

rule! : nane:id COLON e: expr <<#0=#(#nane, #e); >> ; /* a2 */
Creates an AST list with "name" at itsroot and "€" asitsfirst (and only) child.
The following example (a3) is equivalent to al, but more confusing, because the two steps above have been
combined into a single action:

rule! : nane: | D COLON e: expr /* a3 */
<<#O=#(#[Stnt_Wth_Label, $name- >get Text ()], #e) ; >>;

The make-a-root operator for ASTs (") can be applied only to terminals (#token, #tokclass, #tokdef)

A child rule might return atree rather than asingle AST. Were this to happen it could not be made into aroot asit
isalready aroot and the corresponding fields of the structure are in use. To make an AST returned by acalled rule
aroot use the expression: #(root-rule, siblingl, sibling2, sibling3).

addOp N A

#t okcl ass AddOp { "\ +" "\-"}
/* K */ add ! coexpr ("\+""N expr) ;
/* Wong */ addExpr ! . expr (addOp™ expr) ;
[* K */ addExpr ! :expr (AddOp” expr);

An aready constructed AST tree cannot be the root of a new tree
An AST tree (unlessit's atrivial tree with no children) already has made use of the "down" field in its structure.
Thus one should be suspicious of any constructs like the following:
rule! : anotherRule:rule2........ <<#0=#(#anotherRule, . . .); >> ;
Don't assign to #0 unless automatic construction of ASTsis disabled using the "!" operator on arule
al . XX:X yy:y zz:z <<#0=#(#xx, #yy, #zz);>> ; |/ ok
a . XXX Yyy:y zz:z <<#O=#(#xx, #yy, #zz);>> ; [/ NOT ok
The reason for the restriction is that assignment to #0 will cause any ASTs pointed to by #0 to be lost when the
pointer is overwritten.
The statement in Item #86 is stronger than necessary

Y ou can assign to #0 even when using automated AST construction if the old tree pointed to by #0 is part of the new
tree constructed by #(. . .) . For example:

#t oken Conma ,
#token Stm Li st

stmt _list: stn (Comma stnt)* <<#O=#(#[Stnt List], #0);>> ;
The automatically constructed tree pointed to by #0 isjust put at the end of the new list, so nothing islost. If you

reassign to #0 in the middle of the rule, automatic tree construction will result in the addition of remaining elements
at the end of the new tree. Thisis not recommended by TJP.

Specia care must be used when combining the make-a-root operator (e.g. rule: expr Op”™ expr) with this
transgression (assignment to #0 when automatic tree construction is selected).
A rule that constructs an AST returns an AST even when its caller usesthe"!" operator
(C++ mode) Without ANTLRRef CountToken, atoken which isn’t used in an AST will result in lost memory
For arule like the following:

rule : FOR* | Value EQ expr TO expr BY! expr ;

the tokens "EQ", "TO", and "BY" are not incorporated into any AST. In C mode the memory they occupied (they
are called attributes in C mode) would be recovered on rule exit. In C++ mode their memory will be lost unless the
ANTLRTOken class is derived from ANTLRRef CountToken. Another approach isto use the NoL eakToken class from
Example #4.

When passing #(. . .) or#[.. .] toasubroutineit must be cast from "ASTBase *" to "AST *"

Most of the pccTs internal routines are declared using ASTBase rather than AST because they don’t depend on
behavior added by the user to class AST. Usually pcCTs hides this by generating explicit casts, but in the case of

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 18

subroutine arguments the hiding fails and the user needs to code the cast manually. See also Item #163.

#91. Someexamplesof #(. ..) notation using the PcCTS list notation

#92.

#93.

#94.

#95.

See page 45 of the 1.00 manual for adescription of the PccTs list notation.

a. A,
b: B ;
c. C;

#t oken T_abc

r . abec <<; >> ;/* AST list (0 AB C without root */

r': abec <<#0=#(O0, #1, #2,#3);>> ;/* AST list (0 A B C) wthout root */

r : al bl c! <<#0=#(0,#1,#2,#3);>> ;/* AST list (0 A B C wthout root */

r . a*bc ;/* AST tree (AB C with root A */

rl: abec <<#O=#(#1, #2, #3); >> i AST tree (ABC with root A */
r': abec <<#0=#(#[T_abc], #1, #2, #3) ;

I * STtree(T abc_node A B O */

/* th root T _abc_node */

r . abc <<#0=#(#[T_abc], #0) ; >> ; I* the same as above */

r . al' b! c! <<#0=#(# T_abc],#l,#2,#3);>> ; /* the sane as above */

A rule which derives epsilon can short circuit its caller’ s explicitly constructed AST

When arule derives epsilon it will return an AST value of 0. As the routine which constructs the AST tree
(ASTBase::tmake) has avariable length argument list which is terminated by 0, this can cause problem with
#(...) liststhat have more than two elements:

rule ! . DO body: | oop_body END DO <<#0=#(#[DQ, #body, #[END_DJ ; >> ;

| oop_body : { statenent list } ; /* can return 0 on DO END DO */
Although this particular example could be handled by automatic tree construction, the problem is areal one when
constructing atree by adding more than one sibling at atime. This problem does not exist for automatically
constructed AST trees because those trees are constructed one element at atime. Contributed by T. Doan
(tdoan@Dbnr.ca).

How to use automatic AST tree construction when atoken code depends on the aternative chosen

Suppose one wants to make the following transformation:

rule : 1lv:lhs ; => #(#[T_sinple], # v)

rule : Ivilhs rvirhs ; => #(#[T _conplex], #l v, #rv)
Both Ihs and rhs considered separately may be suitable for automatic construction of ASTs, but the change in token
type from "T_simple" to "T_complex" appears to require manual tree construction. Use the following idiom:

rule : lhs (
| rhs <<#0=#(#[T_conpl ex], #0) ; >>
O <<#O=#(#[T_si npl €], #0) ; >>
)
Another solution:

rul e : <<ANTLRTokenType t=T_si nmpl e; >>
[:1hs { r:rhs <<t=T_conpl ex;>> } <<#0=#(#[t], #0),;>> ;

For doubly linked ASTs derive from class ASTDoublyLinkedBase and call tree—>double_link(0,0)

The ASTDoublyLinkedBase class adds "up" and "left" fields to the AST definition, but it does not cause them to be
filled in during AST construction. After thetreeis built call tree->double link(0,0) to traverses the tree and fill in
the up and left fields.

When ASTs are constructed manually the programmer is responsible for deleting them on rule failure

It isworth alittle bit of extratrouble to let PCCTS construct the AST for arule automatically in order to obviate the
need for writing afail action for arule. A safer implementation might be to maintain a doubly linked list of all
ASTsfrom which an AST isremoved when it is destroyed. See class NoLeakAST from Example #5.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 19

Rules

#96. Torefer to afield of an ANTLRToken within arule sactionuse <<... mnytoken($x)->field...>>

ANTLR puts all "ANTLRToken *" variables in an ANTLRTokenPtr object in order to maintain reference counts for
tokens. When the reference counter goesto zero the token is deleted (assuming that the ANTLRToken definition is
derived from ANTLRRefCountToken). Oneresult of thisisthat rule actions which need to refer to areal
ANTLRTOoken field must first convert an ANTLRTOkenPtr to an "ANTLRToken *" using the macro "mytoken":

nunber: n: Nunber <<if (nytoken($n)->value < 0) {...};>>
#97. Rulesdon’t return tokensvalues, thusthiswon’'twork: rul e: ril:rulel <<...%$rl...>>

In earlier versions of PCCTS (C mode) it was accepted practice to assign an attribute to arule:
rule : rulel <<$0=%1;>>
However, with the introduction of symbolic tags for labels (Item #79) this feature became deprecated for C mode
(Item #189) and is not even supported for C++ mode. To return a pointer to atoken (ANTLRTokenPtr) from arule
use inheritance (See Item #113):
st at enent
. <<ANTLRTokenPtr t;>> rule > [t] ;
rule > [ANTLRTokenPtr t]
© X X <<$t=sonmeAction($x);>>
It's till standard practice to pass back AST information using assignment to #0 and to refer to such return values
using labelson rules. It's aso standard practice to refer to tokens associated with terminals:

rule : xx: X << L L BXX. L >> /1 okay: "X' is a term nal (token)

rule : xx:Xx << L L BXX. L >> /1 won’t work: "x" is a rule rather
X DoxXx: X <<Px=%$xx; >> /1 than a term nal (token)

#98. A simple example of rewriting a grammar to remove left recursion
ANTLR can't handle left-handed recursion. A rule such as:

expr : expr Op expr
| Number
| String

will have to be rewritten to something like this:
expr : Nunmber (Qp expr)*
| String (Op expr)*

#99. A simple example of |eft-factoring to reduce the amount of ANTLR lookahead

Another sort of transformation required by ANTLR is |eft-factoring:

rule : STOP WHEN expr
STOP ON expr
| STOP I N expr

These are easily distinguishable when k=2, but with a small amount of work it can be cast into a k=1 grammar:
rule : STOP (WHEN expr
| ON expr
| I'N expr

or:
rul e : STOP rul e_suffix

rule suffix © \HEN expr
| ON expr
| I'N expr

An extreme case of agrammar requiring arewriteisin Example #11.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 20

#100.

#101.

#102.

#103.
#104.

#105.

ANTLR Will guess where to match " @ if the user omitsit from the start rule

ANTLR attempts to deduce "start" rules by looking for rules which are not referenced by any other rules. When it
finds such arule it assumes that an end-of-file token ("@") should be there and adds one if the user did not code
one. Thisisthe only case, according to TJP, when ANTLR adds something to the user's grammar.

To match any token use the token wild-card expression "." (dot)

This can be useful for providing a context dependent error message rather than the all purpose message "syntax
error".

if-stnmt @ IF "\ (" expr "\)" stmt
| TF . <<printf("If statenent requires expression "
"encl osed i n parenthesis");
PARSE_FAI L; /1 user defined
>>

This particular case is better handled by the parser exception facility.

A simpler example:
gquoted : "quote" . ; /1 quoted term nal

The"~" (tilde) operator applied to a#token or #tokclass is satisfied when the input token does not match
anything : (~ t:Newline)* Newine ;

The"~" operator cannot be applied to rules. Use syntactic predicates to express theidea "if this rule doesn't match
try to match this other rule".

The element label "t" in the example allows one to examine the token actually matched. Contributed by Tom
Nurkkala (tom.nurkkal a@powercerv.com).

To list the rules of the grammar grep parserClassName.h for " _root" or edit the output from ANTLR —Cr
The ANTLR —gd trace option can be useful in sometimes unexpected ways

For example, by suitably defining the functions ANTLRParser::tracein and ANTLRParser::traceout one can accumulate
information on how often each rule isinvoked. They could be used to provide atraceback of active rules following
an error provided that the havoc caused by syntactic predicates use of setjmp/longjmp is properly dealt with.

Associativity and precedence of operations is determined by nesting of rules

In the example below "=" associates to the right and has the lowest precedence. Operators "+" and "*" associate to
the left with "*" having the highest precedence.

expr0 ;oexprl {"="" expr0} ; /[* al */
exprl coexpr2 ("\+""N expr2)* ; [* a2 */
expr2 oexpr3 ("*"AN expr3)* /* a3 */
expr3 . ID; /* a4 */

The more deeply nested the rule the higher the precedence. Thus precedenceis™*" >"+" >"=". Consider the
expression "x=y=z". Will it be parsed as "x=(y=2)" or as"(x=y)=z" ? Thefirst part of exprO isexprl. Because
exprl and its descendants cannot match an "=" it follows that al derivationsinvolving a second "=" in an expression
must arise fromthe"{. . . } " term of expr0. Thisimplies right association.

In the following samples the ASTs are shown in the root-and-sibling format used in PCCTS documentation. The
numbers in brackets are the serial number of the ASTs. Thiswas created by code from Example #5.

a=b=c=d

(= <#2> a <#1> (= <#4> b <#3> (= <#6> ¢ <#5> d <#7>))) NL <#8>

at+b*c

(+ <#2> a <#1> (* <#4> b <#3> c <#5>)) NL <#6>

a*b+c

(+ <#4> (* <#2> a <#1> b <#3>) c <#5>) NL <#6>

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 21

#106. #tokclass can replace arule consisting only of alternatives with terminals (no actions)
One can replace:
addOp N T A Y-
with:
#t okcl ass AddOp { "\+" "\-" }
This replaces a modest subroutine with asimple bit test. A #tokclassidentifier may be used in arule wherever a
simple #token identifier may be used.

The other work-around is much more complicated:

exprl! : left:expr2 <<#0=#l;>>
(op:addOp right:expr2 <<#0=#(#op, #l eft,#right);>>)* ;
add@ : II\ +II | II\ - n ;

The"!" for rule "exprl" disables automatic constructions of ASTsin therule. This allows one to manipulate #0
manually. If the expression had no addition operator then the sub-rule " (addOp expr)*" would not be executed and
#0 will be assigned the AST constructed by #left. However if there is an addOp present then each time the sub-rule
isrescanned duetothe”(. ..) *" the current treein #0 is placed as the first of two siblings underneath a new tree.
This new tree hasthe AST returned by addOp astheroot. It isaleft-leaning tree.

#107. Rather than comment out a rule during testing, add a nonsense token which never matches — See Item #110.

Init-Actions

#108. Don't confuse init-actions with |eading-actions (actions which precede arule)

If the first element following the start of arule or sub-ruleisan action it is always interpreted as an init-action. An
init-action occurs in a scope which includes the entire rule or sub-rule. An action which is not an init-action is
enclosed in "{" and "}" during generation of code for the rule and has essentially zero scope — the action itself.

The difference between an init-action and an action which precedes a rule can be especially confusing when an
action appears at the start of an alternative. These appear to be almost identical, but they aren't:

b : <<int i=0;>> bl > [i] /* bl <<...>>1is an init-action */
| <<int j=0;>> b2 > [j] /[* b2 <<...>>is part of the rule */
; /* and will cause a conpilation error */

Online"bl" the<<. .. >> appearsimmediately after the beginning of the rule making it an init-action. On line
"b2" the<<. .. >> does not appear at the start of arule or sub-rule, thusit isinterpreted as a leading action which
happens to precede therule.

This can be especially dangerousif you are in the habit of rearranging the order of alternativesin arule.
For instance, changing this:

b : <<int i=0,j=0;>> <<i++;>> bl > [i] /* cl */
| <<j++;>> bl > [i] [* ¢c2 */
to this:
b : /* enpty production */ [* d1 */
| <<int i=0,j=0;>> <<i++;>> bl > [i] [* d2 */
| <<j++;>> bl > [i]
or to this:
b
<<+ >> bl > [i0] [* el */
| <<int i=0,j=0;>> <<i++;>> bl > [i] [* e2 */

changes an init-action into a non-init action, and vice-versa.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 22

#109. An empty sub-rule can change aregular action into an init-action

A particularly nasty form of the init-action problem is when an empty sub-rule has an associated action:

rule!: nane: 1D (/* enmpty */
<<#0=#[| D, $nane] ; >>
| ab:array_bounds
<<#0=#[T_array_decl arati on, $nane] , #ab) ; >>
)

Since there is no reserved word in PCCTS for epsilon, the action for the empty arm of the sub-rule becomes the init-
action. For thisreason it'swiseto follow one of the following conventions

— Represent epsilon with an empty subrule ()"

— Put the null rule asthelast rulein alist of alternatives:

rule!: nane: 1D (
() <<#0=#[ID, $nane]; >>
| ab:array_bounds
<<#0=#[T_array_decl arati on, $nane], #ab) ; >>
)

The cost of using ()" to represent epsilon is small.
#110. Commenting out a sub-rule can change a leading-action into an init-action
Suppose one comments out arule in the grammar in order to test an idea:

rule /* al */
. <<init-action;>> /[* a2 */
1111 rule_a /* a3 */
| rule_b [* a4 */
| rule_c /* a5 */

In this case one only wanted to comment out the "rule_a" referencein line a3. The reference isindeed gone, but the
change has introduced an epsilon production — which probably creates alarge number of ambiguities. Without the
init-action the ":" would have probably have been commented out also, and ANTLR would report a syntax error —
thus preventing one from shooting oneself in the foot. See Item #107.

Commenting out arule can create orphan rules which can lead to misleading reports of ambiguity in the grammar.
To detect orphan rules use the ANTLR —info o switch.

#111. Init-actions are executed just once for sub-rules: (.. .)+, (...)*,and{...}
Consider the following example from section 3.6.1 (page 29) of the 1.00 manual:

a : <<List *p=NULL; >> /[l initialize list
Type
(<<int i=0;>> /1l initialize index

v: Var <<append(p, i ++, $v);>>
*

<<Qper at eOn(p) ; >>

Inheritance

#112. Downward inherited variables are just normal C arguments to the function which recognizes the rule

If oneisusing downward inheritance syntax to pass results back to the caller (really upward inheritance!) theniitis
necessary to pass the address of the variable which will receive the result.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 23

#113. Upward inheritance returns arguments by passing back values

If the rule has more than one item passed via upward inheritance then ANTLR createsa st r uct to hold the result
and then copies each component of the structure to the upward inheritance variables.
#token T_int

#token T _real
#t oken T_conpl ex

class P {

nunber : <<int useRadi x=10;int i Val ue; doubl e rVal ue; double rPart,iPart;>>
{ radix > [useRadix] }
i nt Nunber [useRadi x] > [i Val ue]
| real Nunber > [rVal ue]
| conpl exNunber > [rPart,iPart]

E:orrpl exNurmber > [doubl e rPart, double iPart]

_ "\[" real Nunber > [$rPart] "," real Nunber > [$iPart] "\]"
real Nunber > [doubl e result] :

_ v:"[0-9]+. [0-9]*" <<$resul t =t oDoubl e($v) ; >>
iradix > [int i] : v:"9%0-9]+" <<$i =t ol nt ($v) ; >>

i nt Nunber [t radix] > [int result]

Vi ‘I[B-g] +" <<$resul t=tol nt ($v);>>
}

This example depends on the use of several constructors for ASTs and user defined routines tolnt() and toDouble().
#114. Be careful about passing via upward inheritance LT(i)->getText() if using ANTLRCommonToken

If the token is destroyed due to the reference count going to 0 will the text till be valid ?
#115. ANTLR —gt code will include the AST with downward inheritance valuesin the rule’ s argument list
#116. Predefine the PURIFY macro if you are passing objects using upward inheritance

The default PURIFY macro zeroes the memory occupied by objects passed via upward inheritance. If your object

has anon-trivial default constructor this could cause problems.

Syntactic Predicates

The terms "infinite lookahead", "guess mode", and "syntactic predicate" al imply use of the same facility in PcCTS to
provide alimited amount of backtracking by the parser. In this case we are not referring to backtracking in bLG or other
lexers. Theterm "syntactic predicate” emphasizes that it is handled by the parser. The term "guess mode" emphasizes that
the parser may have to backtrack. Theterm "guess mode" may also be used to distinguish two mutually exclusive modes
of operation in the ANTLR parser:

— Norma mode: A failure of the input to match the rulesis asyntax error. The parser executes actions,
constructs ASTSs, reports syntax errorsit finds (or invokes parser exception handling) and attempts automatic
recovery from the syntax errors. Thereisno provision for backtracking in this mode.

— Guess mode: The parser attemptsto matcha”(. . .) ?" block and knows that it must be able to backtrack if
the match fails. In this case the parser does not execute user-actions (except init-actions), nor does it construct
ASTs. Failed semantic predicates cause backtracking, except when they are validation predicates.

In C++ mode, lookahead uses a sliding window of tokens whose initial size is specified when the ANTLRTokenBuffer is
constructed. In C mode the entire input is read, processed, and tokenized by DLG before ANTLR begins parsing. Theterm
"infinite lookahead" derives from the initial implementation in ANTLR C mode.

#117. Normal actions are suppressed while in guess mode because they have side effects
#118. Automatic construction of ASTsis suppressed during guess mode because it is a side effect

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 24

#119. Syntactic predicates should not have side-effects
If there is no match then the rule which uses the syntactic predicate won't be executed.
#120. How to useinit-actions to create side-effects in guess mode (despite Item #119)

If you absolutely have to have side-effects from syntactic predicates one can exploit the fact that ANTLR always
executes init-actions, even in guess mode:

rule © (prefix)? A

| B
prefix <<regular-init-action-that's-always-executed>>
A (<<init-action-for-empty-subrule>>) B
The init-actionsin "prefix" will always be executed (perhaps several times) in guess-mode. Contributed by TJP.
#121. With values of k>1 or infinite lookahead mode one cannot use feedback from parser to lexer

As infinite lookahead mode can cause large amounts of the input to be scanned by DLG before ANTLR begins parsing
one cannot depend on feedback from the parser to the lexer to handle things like providing special token codes for
itemswhich arein asymbol table (the "lex hack" for t ypedef s inthe C language). Instead one must use semantic

predicates which alow for such decisions to be made by the parser or place such checks in the ANTLRTokenBuffer
routine getToken() which is called every time the parser needs another token. See Example #10.

#122. Can't use interactive scanner (ANTLR —gk option) with ANTLR infinite |ookahead
#123. Syntactic predicates are implemented using setjmp/longjmp — beware C++ objects requiring destructors

Semantic Predicates

#124. Semantic predicates have higher precedence than alternation: <<>>? A| B means (<<>>? A)| B
#125. Get rid of warnings about missing LT(i) by usingacomment: /* LT(i) */

#126. It is sometime desirable to use leading actions to inhibit hoisting of semantic predicates

#127. Any actions (except init-actions) inhibit the hoisting of semantic predicates

Hereis an example of an empty leading action whose sole purposeis to inhibit hoisting of semantic predicates
appearing in rule2 into the prediction for rulel. Note the presence of the empty init-action (See Item #108).

rul el DL >> <<>> rul e2
| rule3
rul e2 . <<semant | cPred(LT(1)->getText())>>? ID ;

#128. Semantic predicates that use local variables or require init-actions must inhibit hoisting
#129. Semantic predicates that use inheritance variables must not be hoisted

Y ou cannot use downward inheritance to pass parameters to semantic predicates which are not validation
predicates. The problem appears when the semantic predicate is hoisted into a parent rule to predict which rule to

cal:
For instance:
a : bl [fladg]
| b2
bl [int flag]
. <<flag && hasPropertyABC(LT(1)->getText())>>? ID ;
b2 : ID;

When the semantic predicate is evaluated within rule "a" to determine whether to call b1, b2, or b3 the compiler will
discover that there is no variable named "flag" for procedure "a()". If you are unlucky enough to have avariable
named "flag" in a() then you will have avery difficult-to-find bug.

#130. A semantic predicate which is not at the left edge of arule becomes a validation predicate

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 25

#131.

#132.

#133.

#134.

Decisions about which rule of agrammar to apply are made before entering the code which recognizestherule. If
the semantic predicate is not at the left edge of the production then the decision has already been made and it is too
late to change rules based on the semantic predicate. In this case the semantic predicate is evaluated only to verify
that it istrue and is termed a "validation predicate”.

Semantic predicates are not always hoisted into the prediction expression

Even if asemantic predicate is on the left edge there is no guarantee that it will be part of the prediction expression.
Consider the following two examples:

a . <<semantic-predicate>>? | D gl ob /* al */
| IDglob [* a2 */
b : <<semantic-predicate>>? | D gl ob /* bl */
| Nunber glob /[* b2 */

With k=1 rule"a" requires the semantic predicate to disambiguate alternatives al and a2 because the rules are
otherwise identical. Rule"b" has atoken type of Number in aternative b2 so it can be distinguished from b1
without evaluation of the semantic predicate during prediction. In both cases the semantic predicate will be
validated by evaluation inside therule.

Semantic predicates can’t be hoisted into asub-rule: "{ x} y" isnot exactly equivalentto"x y | y"

Consider the following grammar extract:
class Expr {
el : (e2)+ END ;
Xid: <<is xid(LT(1l)->getText())>>? ID;
yid: <<is_ yid(LT(1)->getText())>>? ID;
yid ; /[* al */

/* Works ¥/ e2: xid "." yid |
} yid ; [* a2 */

/* Doesn’t work */ e2: {xid"."
}

Alternatives al and a2 appear to be equivalent, but al works on input "abc" and a2 doesn’t because only the
semantic predicate of xid is hoisted into production el (but not the semantic predicate of yid).
Explanation by TJP: These alternatives are not really the same. The language described however isthe same. The
rule:

e2: {xid "."} yid ;
is shorthand for:

e2: (xid "." | /* epsilon */) yid ;
Rule e2 has no decision to make here — hence, yid does not get its predicate hoisted. The decision to be made for
the empty alternative does not get the predicate from yid hoisted because one can't hoist a predicate into a subrule
from beyond the subrule. The program might alter things in the subrule so that the predicate is no longer valid or
becomes valid. Contributed by Kari Grano (kari.grano@varian.com).
How to change the reporting of failed semantic predicates
To make aglobal change #define the macro zzfailed predicate(string) prior to the #include of pccts/h/AParser.h
One can change the handling on a case-by-case basis by using the "failed predicate” action which isenclosed in"["
and "]" and follows immediately after the predicate:

a : <<isTypedef (LT(1)->getText())>>?
[{printf("Not a typedef\n");};] |ID;

For an example of conversion of afailed semantic predicate into a parser exception see Example #13.
A semantic predicate should be free of side-effects because it may be evaluated multiple times

Even in simple grammars semantic predicate are evaluated at least twice: oncein the prediction expression for arule
and once inside the rule as a validation predicate to make sure the semantic predicate is valid.

A semantic predicate may be hoisted into more than one prediction expressions.
A prediction expression may be evaluated more than once as part of syntactic predicates (guess mode).

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 26

#135. There' s no ssmple way to avoid evaluation of a semantic predicate for validation after use in prediction
#136. What is the "context" of a semantic predicate ?
Answer dueto TJP: The context of apredicateisthe set of k-strings (comprised of |ookahead symbols) that can be
matched following the execution of a predicate. For example,
a . <<p>>7? al pha ;
The context of "p" is Look(alpha) where Look(alpha) is the set of lookahead k-strings for apha.
cl ass_name: <<isC ass(LT(1)->getText())>>? ID ;

The context of <<i sC ass ...>>?isID for k=1. Only k=1 isused since only LT(1) isreferenced in the
semantic predicate. It isimportant to use "—prc on" for proper operation. The old notation:
class_nane: <<LT(1)==ID ? isCass(LT(1)->getText()) : 1>>? ID ;
/* Cbsolete notation inconpatiable with -prc on */

shouldn’t be used for new grammars — it is not compatible with "—prc on". The only reason "—prc on" is not the
default is backward compatibility.
Hereis an example that won't work because it doesn't have context check in the predicates:

a . (class_nane | Num)
| type_name
cl ass_namne ' <<isd ass(LT(1)->getText())>>? ID;
type_name : <<isType(LT(1l)->getText())>>? ID ;
The prediction for production one of rule"a" will be:
if (LT(1) in{ ID, Num} && isC ass(LT(1l)->getText())) {...}
Clearly, Num will never satisfy isClass(), so the production will never match.

When you ask ANTLR to compute context, it can check for missing predicates. With —prc on, for this grammar:

a b

| <<isVar(LT(1)->getText())>>7? I D

| <<isPositive(LT(1)->getText()>>? Num
b <<isType(LT(1)->getText())>>? I D

| Num

ANTLR reports:

warning alt 1 of rule itself has no predicate to resolve
anbiguity upon { Num }

#137. Use ANTLR option "-info p" for information on how semantic predicates are being handled and hoisted

When the user selects option "-info p" the program will generate detailed information about predicates. If the user
selects "-mrhoist on" additional detail will be provided explaining the promotion and suppression of predicates. The
output is part of the generated file and sandwiched between #if O/#endif statements.

Consider the following k=1 grammar:

start : (all) *; [* 3 */
al | ©oa [* 4 */
| b [* 5 */
; [* 6 */
a : ¢ B; [* 7 */
c . <<pc(LT(1))>>? /[* 8 */
| B [* 9 */
; [* 10 */
b : <<pb(LT(1))>>? X ; [* 11 */

Below is an excerpt of the output for rule "start” when used with -mrhoist on and -info p.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 27

#if 0

Hoi sting of predicate suppressed by alternative w thout predicate.

The alt without the predicate includes all cases where the predicate is
fal se.

W TH predicate: line 8 infop.g
W THOUT predicate: line 9 infop.g

The context set for the predicate:

B
The | ookahead set for the alt WTHOUT the semantic predicate:

B
The predicate:

pred << pc(LT(1))>>?
depth=k=1 rule c Iline 8 infop.g
set context:
B

Chai n of referenced rul es:

#0 in rule start (line 3 infop.g) to rule al
#1 inrule all (line 4 infop.g) to rule a
#2 inrule a (line 7 infop.g) torule ¢
#3 in rule c (line 8 infop.Q)

#endi f

&&

#if 0

pred << pb(LT(1))>>?
depth=k=1 rule b line 11 infop.g
set context:
X

#endi f
#138. Semantic predicates, predicate context, and hoisting

The interaction of semantic predicates with hoisting is sometimes subtle. Hoisting involves the evaluation of
semantic predicatesin arule' s parent in order to determine whether the rule associated with the semantic predicate
is"viable". There aretwo ways to generate code for semantic predicates which are "hoisted” into a parent rule.
With "—prc off", the default, the behavior of semantic predicates resembles gates which enable or disable various
productions. With "—prc on" the behavior of semantic predicates resemble atoken for which its token typeis
determined by run-tine information rather than by purely lexica information. It isimportant to understand what
"-prc on" does, when to use semantic predicates, and when to choose an alternative method of using semantic
information to guide the parse. We start with agrammar excerpt which does not require hoisting, then add arule
which requires hoisting and show the difference in code with predicate context computation off (the default) and on.

Consider:
st at enent
. upper
| | ower
| number
upper L4 SU(LT(1)->get Text())>>? ID;
| ower . <<isL(LT(1)->getText())>>? ID;

nurmber : Nunber ;

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 28

The code generated (with one ambiguity warning) resembles:
if (LA(1)==ID && isU {

upper () ; .

} else if (LA(1)==ID && isL) {
[ower () ;

} else if (LA(L1)==Nunber) {
nunber () ;

Now the need for anon-trivial prediction expression isintroduced:

parent : statenent
| ID
st at errenf
upper

| nunber

Running ANTLR causes one ambiguity warning. The code for "statement” resembles:

if ((LA(1)==ID || LA(1)==Nunber) && isU) {
statement ();
} else if (LA(1)==ID) {

Evenif LA(1) isaNumber the semantic predicate isU() will be evaluated. Depending on the way that isU iswritten
it may or may not be meaningful. Thisis exactly the problem addressed by predicate computation. With "—prc on”
one receives two ambiguity warnings and the code for "statement” resembles:

Code —prc on Outline format —prc on
if ((LA(1)==ID || &&
LA(1) ==Nunber) && |]
("(LA(D)==ID) || LA(1)==ID
(LA(1)==ID && isVU)) { LA(1) ==Nunber
statenment () ; |]
} else if (LA(1)==ID) { ! <===== not ...
ce LA(1)==ID <===== an ID
i SU(LT(1)->getText())

Theimportant thing to noticeisthe call to isU() is guarded by atest that insures that the token isindeed an ID.

The following does not change anything because ANTLR already knows that the lookahead context for the semantic
predicates can only be"ID":

upper : (ID)? => <<i sU(LT(1)->getText())>>? ID;

#139. Another example of predicate hoisting

Consider the following grammar fragment which uses semantic predicates to disambiguate an ID in rules caand cb:

a: ({b]|] X} EBol)*"@ ; /[* al */
b: cID; [* a2 */
c : {ca} {cb} ; /[* a3 */
ca: <<pa(LT(1)->getText())>>? ID [* a4 */
cb: <<pb(LT(1)->getText())>>? ID /* a5 */
The code generated for rule c resembles:

if (LA(1)==ID) && pa(...)) { [* bl */

ca(); [* b2 */
} else { /* b3 */

goto exit; /[* b4 */
; [* b5 */

Thetest of "pb" does not even appear. The problem isthat the element "{cb}" is not at the |eft edge of rule c —even
though "{ca}" is an optional element. Although "ca" may match epsilon, its presencein rule c still blocks the

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 29

hoisting of the predicate in rule cb.
A first effort to solve this problem isto rewrite rule ¢ so asto place "ch" on the left edge of the production:

c: () /[* c1 */
| ca {chb} [* c2 */
| cb [* ¢3 */
; /[* c4 */

The code generated for rule ¢ now resembles:

if (LA(1)==ID) { [* dl */
; [* d2 */

} else if (LA(1)==ID && pa(...)) { [* d3 */
[* d4 */

Itisclear that rules caand cb are now unreachable because any ID will always match the test at linedl1. Infact, this
will cause an error message because PCCTS is able to recognize the problem. The order of aternatives should be

changed to:

c : ca {cb} /[* el */

c [* e2 */

[() [* e3 */

; [* e4d */
However our problems aren’t over yet. The code generate for the "(...)*" test in rule "a"' resembles:
while ((LA(1)==X || LA(1)==Eol || LA(1)==ID && [* f1 */
(pa(...) [l pb(...))) { [* t2 %/
[* £3 */

If both pa and pb are false then the body of the rule is never entered even though it should match an X or and ID
using the rule on line a2 when rule c derives epsilon.

This can be fixed by using the ANTLR "-mrhoist on" option which suppresses the test for paand pbinrule"a"
because ID isaviable aternative. See Item #140.

Contributed by Sigurdur Asgeirsson (sigurasg@menandmice.com).
#140. Example of predicate hoisting and suppression with the ANTLR option -mrhoist on
Consider the following grammar fragment:

a : bc [* 2 =/
| d [* 3 */
: [* 4 */
bc : b /[* 5 */
| ¢ /[* 6 */
: [* 7 */
b : <<pb(LT(1))>>? ID; /[* 8 */
c : ID; /* 9 */
d : <<pd(LT(1))>>? ID; /* 10 */

With no predicate context computation (-prc off) the generated code for rule "a"' resembles:
if (LA(1)==ID && pb) {
be();
} else if (LA(1)==ID && pd) {
d();
}o.o..
The code for the first alternative is incorrect because ¢ (and therefore bc) is still a viable choice when pb is false.
With the default predicate context computation (-prc on) the generated code for rule"a" resembles:
if (LA(1)==ID && ((! LA(1)==ID) || pb)) {
bc();
} else if (LA(1)==ID && ((! LA(1)==ID) || pd)) {
d();
}o.o..

Thisis more complex, but a close look at the code shows that thisis no better than the code generated by -prc off.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 30

The extra code checks that the predicate pb is evaluated only when the lookahead isID. Since we always expect the
predicate to be ID this provides no extra power.

With option -mrhoist on the code generated for rule "a' resembles:
if (LA(1)==ID {
be() ;
} else if (LA(1)==ID && ((! LA(1)==ID) || pd)) {
d();
}o.o..

Thisisthe correct code sequence. However, we have awarning:

c.g(2) : warning: alt 1 line 2 and alt 2 line 3 of of the rule itself
These alts have anbi g | ookahead sequences resolved by a predicate for
the second choice. The second choi ce nay not be reachabl e.
You may want to use a conplenentary predicate or rearrange the alts
The problem is that the prediction expression for bc in rule awill always match an ID. Thisisthe correct prediction
expression because rule c is aways viable when the lookahead is ID, but the alternative for ruled in ruleaisno
longer reachable when the lookahead is ID. Hence the warning.

We now return to the topic of predicate hoisting. Using the ANTLR -info p option we would find the following note
in the generated code:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 31

#f 0

Hoi sting of predicate suppressed by alternative w thout predicate.
The alt without the predicate includes all cases where the predicate is
fal se.

W TH predicate: line 5 c.g
W THOUT predicate: line 6 c.g

The context set for the predicate:
I D

The | ookahead set for the alt WTHOUT the semantic predicate:
I D

The predicate:

pred << pb(LT(1))>>?
depth=k=1 rule b Iine 8 c.g
set context:
I D

Chai n of referenced rul es:

line 2 c.g) to rule bc
(line 5 c.g)

#endi f
if ((LA(1)==1D) {
be();

el se {
if ((LA(1)==ID) &&
#if 0

pred << pd(LT(1))>>?
depth=k=1 rule d Iline 10 c.g
set context:
I D

#endi f
(!(((Lﬁg)l):I D)) I (pd(LT(1))))) {

There are additional examplesin the CHANGES FROM_133*.TXT files.
#141. Thecontextguard (...)? && <<predicate>>? vs.(...) => <<predi cate>>?
Theideafor the new (...)? & & <<predicate>>?is dueto Reinier van der Born (reinier@vnet.ibm.com)

The(...)? => predicate guard does not apply the predicate if the context guard doesn't match, whereas the
(...)? &&form requires both the predicate guard and the predicate to be true to make the alternative viable.
What is the significance ?

If you have a predicate which is not on the "leading edge" it cannot be hoisted. Suppose you need a predicate that
looksat LA(2). You must introduce it manualy. The classic exampleis:

cast Expr : LP typeNane RP
| ...

typeName : <<isTypeName(LT(1))>>? 1ID
| STRUCT ID

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 32

The problem isthat isTypeName() isn't on the leading edge of castExpr because of the LP which precedesit. Thus
it will not be hoisted into the prediction expression for castExpr. Thefirst attempt to fix it is:

cast Expr : <<isTypeNanme(LT(2))>>? LP typeNane RP
Unfortunately, this won't work because it ignores the problem of STRUCT. The solution isto apply isTypeName()
in castExpr if LA(2) isan ID and don't apply it when LA(2) is STRUCT:
cast Expr : (LP ID)? => <<isTypeNane(LT(2))>>? LP typeNane RP
| ...

In conclusion, the "=>" style guarded predicate is useful when:
a. The tokens required for the predicate are not on the leading edge.
b. there are alternatives in the expression selected by the predicate for which the predicate is inappropriate.

If (b) were false, then one could use a simple predicate (assuming "-prc on"):
cast Expr : <<isTypeNane(LT(2))>>? LP typeNane RP
| ...

typeName : <<isTypeName(LT(1))>>? 1ID

So, when do you use the"& &" style guarded predicate ? The new-style"&&" predicate should always be used with
predicate context. The context guard isin addition to the automatically computed context. Thusit useful for
predicates which depend on the token type for reasons other than context.

The following example is contributed by Reinier van den Born.
This grammar has two waysto call functions:

A "standard" call syntax with parens and comma separated arguments.
A shell command like syntax (no parens and spaces separate arguments).

The former alows avariable to hold the name of the function, the latter can be used to call external commands. The
grammar (simplified) looks like this:
fun_call : ID"(" { expr ("," expr)* } ")"
/* IDis function name */
| "@ ID"(" { expr ("," expr)* } ")'
/* IDis var containing fun name */

comand . I D expr* /* IDis function name */
| path expr* /* path is external command nane */
pat h . ID /* left out slashes and such */
| "@ 1D /* IDis environnment var */
expr o
| (" expr ")
cal | . fun_call
| command

Obvioudly the call iswildly ambiguous. Thisis more or less how thisisto be resolved:
A call beginswithan ID or an"@" followed by an ID.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 33

#142.

Ifitisan ID and:

a it isan external command name => command
b. it isfollowed by aparen => fun_call
c. otherwise => command

Ifitisan @ and:

a thelD isavar name => fun_call
b. otherwise => command

One can implement these rules quite neatly using & & predicates:

cal l D ("@ I1D)? && <<isVarName(LT(2))>>? fun_call
| (1D? && <<i sExt CndNane>>? conmand
| (ID"(")? fun_cal |
| conmand

Experimental ANTLR option -mrhoistk on for suppression of predicates with lookahead depth k> 1

The ANTLR option -mrhoist provides fairly complete handling of predicates with lookahead depth of 1. The
handling of predicates with lookahead depth greater than one is more complicated and the solution provided by
PCCTS is good, but not complete.

Consider the following grammar with -ck 2 and the predicate in rule "a" with depth 2:

ri : (ab)* "@ [* 2 *]
ab : a /* 3 */
| b [* 4 *]
: [* 5 */
a . (AB)? => <<p(LT(2)>>? ABC; /* 6 */
b . ABC; [* 7 */

Without "-mrhoistk on" the predicate would be hoisted into rule r1 in order to determine whether to call rule "ab".
However it should not be hoisted because, even if p isfalse, thereisavalid adternativein rule b. With "-mrhoistk
on" the predicate will be suppressed.

With the "-mrhoistk on" and "-info p" the following information will appear in the generated code:
while ((LA(1)==A)
#if O

Part (or all) of predicate with depth > 1 suppressed by alternative w thout
predi cate

pred << p(LT(2)>>?
dept h=k=2 ("=>" guard) rule a line 6 tl.g
tree context:
(root = A
B
)

The token sequence which is suppressed: (AB)
The sequence of references which generate that sequence of tokens:

1to ab ri/1 [ine 2 tl. g
2 ab ab/ 1 line 3 tl.g
3tob ab/ 2 line 4 tl. g
4 b b/ 1 line 7 tl.9g
5 #token A b/ 1 line 7 tl.g
6 #token B b/ 1 line 7 tl. g
#endi f
) |

ab();

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 34

Thereis a second, more complex, example of the -mrhoistk option in the CHANGES FROM_133*.TXT file.
#143. Use #pred statement to describe the logical relationship of related predicates

A problem with predicatesis that each one is regarded as unique and capable of disambiguating cases where two
alternatives have identical lookahead. For example, consider:
rule : <<pred(LATEXT(1))>>? A
| <<pred(LATEXT(1))>>? A
Even though the two alternatives are identical, this will not cause any error messages or warnings to be issued by the
original versions of PccTs. One could compare the text of the predicate, but thisis not arobust or satisfactory
solution.

The #pred statement allows one to give a symbolic nameto a "predicate literal" or a"predicate expression” in order
to refer to it in other predicate expressions or in the rules of the grammar.

The predicate literal associated with a predicate symbol is C or C++ code which can be used to test the condition. A
predicate expression defines a predicate symbol in terms of other predicate symbolsusing "!", "&&", and "|". A
predicate symbol can be defined in terms of a predicate literal, a predicate expression, or both.

When a predicate symbol is defined with both a predicate literal and a predicate expression, the predicate literal is
used to generate code, but the predicate expression is used to check for two aternatives with identical predicatesin

both alternatives.
Here are some examples of #pred statements:
#pred | slLabel <<i sLabel (LATEXT(1))>>?

#pred |sLocal Var <<ij sLocal Var (LATEXT(1)) >>?

#pred |sd obal var <<i sd obal Var (LATEXT(1) >>?

#pred | sVar <<i sVar (LATEXT(1)) >>? I sLocal Var || |sd obal Var
#pred |sScoped <<i sScoped(LATEXT(1)) >>? I sLabel || IsLocal Var

The predicate IsLocalVar is related to 1sGlobal Var (See the definition of 1sVar). The #pred attempts to capture this
for use in analyzing the predicates appearing that appear in prediction expressions. Thisis discussed in more detail
in the file CHANGES FROM_133 BEFORE_MR13.TXT.

#144. Disable predicate hoisting explicitly using the pseudo-action: r ul e: <<; >> <<nohoi st>> ...
A common error, even among experienced PCCTS users, isto code an init-action to inhibit hoisting rather than a
leading action. An init-action does not inhibit hoisting.

This was coded:
rulel : <<;>> rule2
Thisiswhat was meant:
rulel : <<;>> <<;>> rul e2
Now the user can code:
rul el : <<;>> <<nohoist>> rul e2
The following will give an error message:
rul el : <<nohoist>> rul e2
If the <<nohoist>> appears as an init-action rather than aleading action an error message is issued.

#145. Simplification of predicate expressions when there are multiple references to predicates

When arule containing a semantic predicate is referenced by more than one aternative of a grandparent rule or
other ancestor, alarge numbers of semantic predicate references can sometimes be generated. An effort has been
made to simplify some of them. The table below summarized the kind of simplification performed. In the table, X
and Y stand for single predicates (not trees).

(RX(ORY (OR 2))) = (R XY 2

(AND X (AND Y (AND 2))) => (AND X Y 2)

(ORX (... (OR XVY) ...)) = (ORX (... Y...))

(AND X (... (AND XY) ...)) => (AND X (... Y ...))

(ORX (... o)) = (ORX (... ...))

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 35

(AND X (... (OR XY) ...)) = (AND X (... ...))
(AND X) => X
(OR X) => X

Debugging Tipsfor New Users of PcCTS

#146. A syntax error with quotation marks on separate lines means a problem with newline

line 1. syntax error at "
" mssing ID

#147. Use the ANTLR —gd switch to debug viarule trace
#148. Use the ANTLR —gs switch to generate code with symbolic names for token tests
#149. How to track DLG results

If the pre-processor symbol DEBUG_LEXER is defined when DLGL exerBase is compiled it will include code to assist

in debugging your lexer. To turn on the debug output:
previ ousDebugVal ue=I exer. debuglLexer (newbDebugVal ue) ;
A value of 1 enables the debug output while avalue of 0 disables output.

#150. For complex problems use traceOption and traceGuessOption to control trace output

Switches and Options

#151. Use ANTLR —gx switch to suppress regeneration of the DLG code and recompilation of DLGL exer.cpp

It is possible to maintain separate grammar files for the DLG definitions of #tokens and the ANTLR definition of rules
so that the DLG related code (and routines having dependence on tokens.h) need not be re-compiled just because of a

changein arule’ saction.
#152. Can't use an interactive scanner (ANTLR —gk option) with ANTLR infinite lookahead
#153. To make DLG case insensitive use the DLG —ci switch

The analyzer does not change the text, it just ignores case when matching it against the regular expressions.
#154. Use ANTLR option -gims to convert Microsoft file nameslike "..\foo.g" to "../foo.g" in generated files
#155. Use ANTLR option -treport number to locate alternatives using alot of CPU time to resolve

It can be difficult to determine which alternatives are causing PCCTS to work hard to resolve an ambiguity. In some

cases the ambiguity is successfully resolved after much CPU time so there is no message at all.

A rough measure of the amount of work being performed which is independent of the CPU speed and system load is

the number of tnodes created. Using "-info t" gives information about the total number of tnodes created and the
peak number of tnodes.

Tree Nodes: peak 1300k created 1416k lost O

It also putsin the generated C or C++ file the number of tnodes created for arule (at the end of the rule). However

thisinformation is not sufficient to locate the alternatives within a rule which are causing the creation of tnodes.
Using:
antlr -treport 100000

causes antlr to list on stdout any alternatives which require the creation of more than 100,000 tnodes, along with the

lookahead sets for those alternatives.
#156. The ANTLR option -info (p - predicate, t - tnodes, m - monitor, f - follow set, 0 - orphans)

The ANTLR -info options may be combined and may appear in any order:
antlr -info ptm-CC -gt -nrhoist on nmygrammar. g

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 36

Summary:
-infop Extrapredicate information in generated file.

-infot Information about tnode usage appears at the end of each rulein the generated file and on stderr.
A tnodeis used only when analyzing k>1 grammars.
Compare with -treport number.

-infom Monitor progress:

Prints name of each rule asit is started.
Flushes output at start of each rule.

-infof First/follow set information sent to stdout.
-infoo (letter o) Orphan rules (rules not referenced by any other rule).

-inffo0 (digit zero) No-operation

Multiple Source Files

#157. To see how to place main() in a.cpp file rather than a grammar file (".g") see pccts./testcpp/8/main.cpp

#i ncl ude "tokens. h"
#i ncl ude " myParserClass. h"
#i ncl ude "DLG.exer. h"

#158. How to put file scope information into the second file of a grammar with two .g files

If one did place afile scope action in the second file, ANTLR would interpret it asthe fail action of the last rule
appearing in the first grammar file.

To place file scope information in the second file #include the generated file in yet another file which has thefile
scope declarations.

Source Code Format

#159. To place the C right shift operator ">>" inside an action use "\>\>"
If you forget to do thisyou'll get the error message:
war ni ng: M ssing <<; found dangling >>
No specia action is required for the shift |eft operator.
#160. One can continue aregular expression in a#token statement across lines (or use flex definitions)

One can continue an antlr #token definition across aline boundary, by using a backslash, but if your regular
expressions are that long, it might be wiser to use flex, which allows the definition of elements which can be
combined to create complex regular expressions.

#161. A #token without an action will attempt to swallow an action which immediately followsit - use ;"

Thisisaminor problem when the #token is created for use with attributes or ASTs nodes and has no regular
expression:

#t oken Cast Expr

#t oken Subscri pt Expr

#t oken Argunent Li st
<<

Code related to parsing
>>

You'l receive the message:

war ni ng: action cannot be attached to a token nane
(...token nane...); ignored

To solve this problem one is now allowed to end a #token definition witha";":
#t oken ArgumentLi st ;

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 37

Miscellaneous

#162.
#163.

#164.

#165.

#166.
#167.

#168.

#169.

A grammar may contain multiple start rules. They aren’t declared.

Givenrul e[A a,B b] > [X x] theprotoisX rul e(ASTBase* ast,int* sig,A a, B b)

The argument "sig" is the status value returned when using parser exception handling.

If automatic generation of ASTsis not selected, exceptions are not in use, or there are no inheritance variables then

the corresponding arguments are dropped from the argument list. Thus with ASTs disabled, no parser exception
support, and neither upward nor downward inheritance variables the prototype of arule would be;

void rul e()
To remake ANTLR after changesto the source codeusemake -f makefil el
Thefirst problem with the standard makefile is that generic.h does not appear in the dependency lists. The second
problem isthat the rebuild of antlr.c from antlr.g and of scan.c from parser.dlg have been commented out so asto

allow building ANTLR on a machine without ANTLR the first time when there are problems with zip restoring
modification dates for files.

ANTLR reports"... action buffer overflow ..."
There are several approaches:

Usually one can bypass this problem with several consecutive action blocks. Contributed by M.T. Richter
(mtr@ottawa.com).

One can place the code in a separate file and use #include. Contributed by Dave Seidel.
One can add -DZZL EXBUFSIZE=value to the command line.
Exception handling uses status codes and swi t ch statements to unwind the stack rule by rule
For tokens with complex internal structure add #token expressions to match frequent errors
Suppose one wants to match something like a floating point number, character literal, or string literal. These have a
complex internal structure. It is possible to describe them exactly with DLG. Butisit wiseto do so ? Consider:

"\ff' for'\xff' or "\'niThe result is: " for"\nThe result is:

If DLG failsto tolerate small errors like the ones above the result could be dozens of error messages as it searches for
the closing quotation mark or apostrophe.

One solution is to create additional #token definitions which recognize common errors and either generates an
appropriate error message or return a special #token code such as"Bad_String_Const”. This can be combined with
a specia #lexclass which scans (in avery tolerant manner) to the end of the construct and generates no additional
errors. Thisisthe approach used by John D. Mitchell (johnm@jGuru.com) in the recognizer for C character and
string literals in Example #1.

Another approach isto try to scan to the end of the token in the most forgiving way possible and then to validate the
token’s syntax in the DLG action routine.

See pcctgtestepp/2/test.g and testcpp/3/test.g for examples of how to integrate non-DLG lexers with PCCTS
The examples were written by Ariel Tamches (tamches@cs.wisc.edu).
Ambiguity, full LL(K), and the linear approximation to LL (k)

It took me awhile to understand in an intuitive way the difference between full LL (k) lookahead given by the ANTLR
—k switch and the linear approximation given by the ANTLR —ck switch. Most of thetime | run ANTLR with —k 1 and
—ck 2. Because | didn't understand the linear approximation | didn't understand the warnings about ambiguity. |
couldn't understand why ANTLR would complain about something which | thought was obviously parse-able with
the lookahead available. | would try to make the messages go away totally, which was sometimes very hard. If |
had understood the linear approximation I might have been able to fix them easily or at least have redlized that there
was no problem with the grammar, just with the limitations of the linear approximation.

I will restrict the discussion to the case of "—k 1" and "—ck 2".
Consider the following example:

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 38

rul el rule2a | rule2b | rule2c ;
rule2a : AX| BY| CZ;

rule2b : B X | B Z;

rule2c : C X ;

It should be clear that with the sentence being only two tokens this should be parseable with LL(2).

Instead, because k=1 and ck=2 ANTLR will produce the following messages:

[pcctsl20/bin/antlr -k 1 -gs -ck 2 -gh exanple.g
ANTLR par ser generator Version 1.20 1989-1994

exanple.g, line 23: warning: alts 1 and 2 of the rule itself
anmbi guous upon { B}, { X 2}
exanple.g, line 23: warning: alts 1 and 3 of the rule itself

anmbi guous upon { C}, { X}
The code generated resembl es the following:

i f (LA(1)==A || LA(1)==B || LA(1)==C &&
(LA(2)==X || LA(2)==Y || LA(2)==2Z) then rule2a()
else if (LA(1l)==B) &&

(LA(2) ==X || LA(2)==2) then rule2b()
else if (LA(1l)==0 &&
(LA(2)==X) then rule3a()

This might be called "product-of-sums'. Thereisan "or" part for LA(1), an "or" part for LA(2), and they are
combined using "and". To match, the first lookahead token must be in the first set and the second lookahead token
must be in the second set. 1t doesn't matter that what one really wantsis:
if (LA(L) ==A && LA(2)==X) ||
(LA(1)==B && LA(2)==Y) ||
(LA(1)==C && LA(2)==Z) then rul e2a()
else if (LA(1l)==B && LA(2)==X)
(LA(1)==B && LA(2)==2Z) then rule2b()
else if (LA(1)==C && LA(2)==X) then rule2c()
The problem is that each product involves one element from LA(1) and one from LA(2) and as the number of
possible tokens increases the number of terms grows as N2. With the linear approximation the number of terms
grows (surprise) linearly in the number of tokens.

ANTLR won't do thiswith k=1 (it would for k=2). It will only do "product-of-sums". However, al is not lost — you
simply add a few well chosen semantic predicates which you have computed using your LL (k>1), mobile, water-
resistant, all purpose, guaranteed-for-a-lifetime, carbon based, analog computer.

The linear approximation selects for each branch of the "if" a set which may include more than what is wanted but
never selects a subset of the correct lookahead sets. We simply insert a hand-coded version of the LL(2)
computation. It'sugly, especially in this case, but it fixes the problem. In large grammarsit may not be possible to
run ANTLR with k=2, so thisfixes afew rules which cause problems. The generated parser may run faster because it
will have to evaluate fewer terms at execution time.

<<
i nt use_rule2a()
if (LA(1l)==A &% LA(2)==X) return 1;
if (LA(1l)==B && LA(2)==Y) return 1;
if (LA(1l)==C && LA(2)==Z) return 1;
return O;

}

>>

rul el : <<use_ru >>? rule2a | rule2b | rule2c ;

rule2a : A X | cz;

rule2b : B X |
CX

rul e2c

| e2a
Y|
Z

oww=

Correction due to Monty Zukowski (jaz@jGuru.com)

Thereal cases |'ve coded have shorter code sequences in the semantic predicate. | coded this as afunction to make
it easier to read. Another reason to use afunction (or macro) isto make it easier to read the generated code to

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 39

determine when your semantic predicate is being hoisted too high. It's easy to find references to afunction name
with the editor — but difficult to locate a particular sequence of "LA(1)" and "LA(2)" tests. Predicate hoistingisa
separate issue which is described in Item #138.

In some cases of reported ambiguity it is not necessary to add semantic predicates because no valid token sequence
could get to the wrong rule. If the token sequence were invalid it would be detected by the grammar eventually,
although perhaps not where one might wish. In other cases the only necessary action is areordering of the
ambiguous rules so that a more specific ruleistested first. The error messages still appear, but one can ignore them
or place atrivial semantic predicate (i.e. <<1>>?) in front of the later rules. This makes ANTLR happy because it
thinks you've added a semantic predicate which fixes things.

#170. Ambiguity, #pr agna, and ANTLR -rl switch (Contributed by John Lilley jlilley@empathy.com)
This note predates -treport (Item #155) and ambiguity aid (Item#54 ff.). However, it is still worth reading.

A significant problem is the exhaustion of ANTLR's lookahead-analysis resources, which is often related to the use of
(...)*.Withoutthe-r| option, ANTLR may consume alarge, perhaps unlimited, amount of memory attempting to
create the lookahead token sets for productionsinvolving (...) *. If - r | isspecified, then when ANTLR reaches the
specified limit, it will exit with the error message "Ran out of resources while attempting to analyze something"”. |
alwaysusethe-r| option; setting it to 600000 isusually sufficient even for large grammars. Withan-r | setting
of 60000 ANTLR can consume about 40M bytes of memory before aborting.

Note: With recent versions of PCCTS one can use -treport to get information on tree node usage for each rule.

An ambiguity problem is hard to get a handle on because there islittle indication of the cause of the problem. If you
get this sort of error start looking for:

a. An(..)* wherethe"..." might be empty.

b. Two adjacent (...) *, perhaps brought together by related rules, where both (...) might match the same thing.
c. Something like{ A} (...)* { A}.

d. Recursion can aso be aproblem if the recursion effectively implements (...)*.

Of course, the pieces of this puzzle might be sitting in different rules that just happen to get slapped together in
some production, so it can be incredibly frustrating to diagnose. Sometimes, thereis areal ambiguity underneath
the problem (like a repetition of a possibly empty construct). Other times, the pattern just exceeds ANTLR's abilities.
When this happens, ANTLR tries to compute an infinite or exponential number of combinations.

The following is the type of thing that drives ANTLR crazy, although thisis too simple to exhibit any resource
problem (you'll just get an ambiguity warning). But if this pattern were alot more complex, you'd get resource

problems:
a: (b+c
b: { X] Y| Z2}
c: Z

There are several approaches I've taken to counter this problem:

a. Use source code control. Any time you introduce a significant change to a large grammar check in a snapshot
first. Then, if you get this error, back out the changes and apply them incrementally.

b. Use#pr agma appr ox. Bevery careful withthis! It isasledgehammer for difficult cases that seem to have
no other solution. It is dangerous because it easily masks problems in the grammar. The documentation for

#pr agma appr ox issketchy, but it seems to do the following things in situations where there is ambiguity
and/or exponential analysis.

1. It performsalinear analysis: the leading set of tokenswill be computed for each lookahead slot
(LA(2), LA(2), etc.) but no "token set tree” will be calculated. Thisisreally only important for k>1.

2. #pragma approx (..)* or #pragmaapprox (..)+ tellSANTLR to favor another iteration
of the (...) over whatever rules may follow.

3. #pragma appr ox {...} tellsANTLR to favor the optional stuff over skipping it and matching what
follows.

4. #pragmaapprox (A | B) tellsaNTLRto favor A over B.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 40

Y ou should only use #pr agma appr ox when you are certain what is causing the problem, and there is no more
specific way (such as predicates) to fix it.

c¢. Usethe ambiguity aid options to locate rules which are contributing to the ambiguity that is driving ANTLR out
of resources (Item ¢ added for 2.22 by THM).

d. Selectively disable or remove rules until the problem goes away. The purpose of thisisto identify rules that
participate in the ambiguity that is driving ANTLR out of resources. If you remove or disable arule and the
problem goes away, then the rule has something to do with the problem, although it requires more thought to
diagnose the exact ambiguity. | sometimes create a special token that is never matched and use it in the grammar
for the purpose of removing arule from any potentially ambiguous interaction with other rules. For example, to
remove rule"a" from consideration (in a certain sense), change:

a: bc (d* ;
to:

a . Unmatched b ¢ (d)* ;

where Unmat ched isatoken that is never generated. Thiswill point out if the leading set of "a" is conflicting
with other rules and causing problems.

Here's an example of something that drove me crazy in the C++ grammar. A fully-qualified identifier can have
template arguments: this declares "x" to be a specialization of "A":
A<3> X;
The relevant part of the grammar was "qualified id", which matches a series of A::B::C:: followed by an ID:
scope_override /1A B :C:...
id:ID
(n n
<
tenpl at e_argunent s
non

/1l enpty

However, this was getting confused with relational expressions such as:
(A<3) > x;
The first task was identifying this as the problem. ANTLR actually blew up in an entirely different place, one that

followed this rule sequentially in some productions. It took some selective disabling and rearrangement of rulesto
identify thisrule as a culprit.

When this finally was pinpointed as an ambiguity, | couldn't see how this was, because "A" was atype, and types
can't participate in relational expressions. However, after some more searching | dug up this case:
operator A< 3 > Xx;
The problem is that the type identifier "A" can be used as the "optor" for an operator function specification, so in
that context (which is semantically invalid but permitted by the grammar), atype followed by "<" can be either a
template specifier or arelational expression. There were awhole family of cases, al involving "operator”, which
allowed type names to show up where types were not allowed (or so | thought). The final solution was twofold:
First, a semantic predicate had to categorize an identifier as "templated”. Second, #pr agha appr ox was used to
avoid the complex processing that was bogging ANTLR down:
scope_override [1TA:B:C:...
id: 1D
#pragma appr ox

<<i sTenpl at edNanme($i d- >get Text ()) >>?
N

tenpl ate_argunents
n >II

/Il enmpty

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 41

#171.

#172.

#173.

Note that, if the brute-force #pr agma appr ox had been used, then some relational expressions would never be
parsed. The combination of #pr agma appr ox and the predicate has (hopefully) solved the problem correctly.

What isthe differencebetween (. ..)? <<...>>? X'and"(...)? => <<...>>? X'?

Thefirst expression is a syntactic predicate followed by a semantic predicate. The syntactic predicate can perform
arbitrary lookahead and backtracking before committing to the rule. However it won't encounter the semantic
predicate until already committed to the rule — this makes the semantic predicate merely a validation predicate.
Not avery useful semantic predicate.

The second expression is a "guarded semantic predicate” with a convenient notation for specifying the look-ahead
context. The context expression is used to generate an "if" condition similar to that used to predict which ruleto
invoke. Itisn’'t any more powerful than the grammar analysisimplied by the values you' ve chosen for the ANTLR
switches—k and —ck. It doesn’'t have any of the machinery of syntactic predicates and does not allow arbitrarily
large lookahead. If the syntax predicate is true the semantic predicate is evaluated — if true the parse of the
aternative continues, and if false the parse of that alternative is aborted. If the syntax predicate is false then the
semantic predicate is ignored and the parse continues. A common misconception is that the parse of the alternative
is rejected when the syntax predicateisfalse.

Memory leaks and lost resources

Syntactic predicates use setjmp/longjmp. They cause leaks even with reference counted tokens. (Item #123).
Delete temporary attributes on rule failure and exceptions (Item #193).

Delete temporary ASTs on rule failure and exceptions (Item #95).

A rule that constructs an AST returns an AST even when its caller usesthe"!" operator (Item #88).

(C++ mode) A rulewhich applies"!" to aterminal loses the token (Item #89) unless the ANTLR reference counting
option is enabled.

(C mode) Define azzd_ast() routine if you define azzer_ast() or zzmk_ast() (Item #200).

Some ambiguities can be fixed by introduction of new #token numbers

For instance in C++ with a suitable definition of the class "C" one can write:
Ca,b,c /* al */
a.funcl(b); /[* a2 */
a. func2() =c; /[* a3 */
a = b; /* a4 */
a.operator =(h); /* a5 */

Statement a5 happensto place an "=" (or any of the usual C++ operators) in atoken position where it can cause alot
of ambiguity in the lookahead set. One can solve this particular problem by creating a special #lexclass for things
which follow "operator" with an entirely different token number for such operator strings — thereby avoiding the
whole problem.

/1
/1l C++ operator sequences (somewhat sinplified for these notes)
/1
/1 operator <type nane>
/1 operator <special characters>
/1
/1 There nust be at | east one non-al phanuneric character between
/1 "operator" and operator name - otherw se they would be run
/1l together - ("operatorint"” instead of "operator int")
/1
#1 excl ass LEX OPERATOR
#token FILLER C1 N AR

<<skip();

i f(isalnum(ch)) node(START);

>>

#t oken OPERATOR_STRI NG AR RAVAZ EA RN AN AR NN R
<<node(START) ; >>

#token FILLER C2 "N(OV) | ON[ND T

<<node(START) ; ret urn OPERATOR_STRI NG, >>

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 42

#174. Subclassing DLGInputStream

To subclass DLGInputStream requires DLGL exerBase which is dependent on ANTLRTokenType. However the values
of the ANTLRTokenType may not be known at thetime. The workaround isto define adummy ANTLRTokenTypein
the header file for your subclass. Because enum definitions have only file scope, this should not cause a problem as
long as all files which include your class use the same size int to represent the enum.

Changes From The Original 1.33 Which Are Not Part of Any Other Section

A complete log of al but the most trivial changes are distributed in the pccTs kits. The most recent changes arein
CHANGES FROM_133.TXT. Changes prior to 1.33MR13 are in CHANGES FROM_133 BEFORE_MR13.TXT. Finaly, for those
who don’t have the endurance to read these files, there is a CHANGES_SUMMARY.TXT which contains only the most
interesting parts of those files. The following items are based on thislast file.

#175. Use#f i rst <<...>to place references to precompiled header files at the beginning of generated files
#176. Use DLGL exerBase::reset() to reset the input stream when parsing the input stream multiple times.
#177. Error counters are: ANTLRParser::syntaxErrCount and DLGL exerBase::|exErrCount
These counters are not reset to zero by ANTLRParser::init().
#178. Use"cl ass MyParser : public MyBaseParser ... { "tospecify your own parser base class

The information following the ":" is copied to the class declaration for MyParser. The constructor of the base class
(e.g. MyBaseParser) must have the same signature as ANTLRParser.

#179. Use #Fi r st Set Synbol (symbol_name) to generate symbol for first set of an alternative

The set can be tested using:
if (set_el (token->getType(), symbol name)) {...}
A follow set can be generated by placing the #FirstSetSymbol operator after the block of interest:
rr . (rule_a | rule_b) #FirstSetSynbol (ab_follow) () ;
#180. Use- preanbl e and - preanbl e_fi r st toinsert macro code at the start of each rule or block

The antlr option -preamble causes ANTLR to insert the code "BLOCK_PREANMBLE" at the start of each rule and
block.

The option -preamble_first inserts the code "BLOCK _PREAMBLE_FI RST(Pr eanbl eFi r st _number) " where
the symbol Pr eanbl eFi r st _number is equivalent to thefirst set defined by the #FirstSetSymbol described
above.

#181. Preprocessor option ZZDEFER _FETCH to defer token fetch for C++ mode

When the ANTLRParser classis built with the pre-processor option ZZDEFER_FETCH defined, the fetch of new
tokens by consume() is deferred until LA(i) or LT(i) iscalled. Thisisuseful in cases where there is a potential for a
deadlock between a supplier of datawhich iswaiting for the parser to ask for more data and the parser which is
waiting for another token because of prefetching.

The defer fetch feature cannot be used with the standard tracein() and traceout() routines because they display
information from a prefetched token. The function isDeferFetchEnabled() tests whether this feature is enabled.

#182. Exception handling

There were significant problems in the handling of exceptionsin 1.33 vanilla The general problem isthat it can
only process one level of exception handler. For example, a named exception handler, an exception handler for an
alternative, or an exception for a subrule always went to the rule's exception handler if there was no "catch” which
matched the exception.

Now the exception handlers properly nest. If an exception handler does not have a matching "catch” then the
nextmost outer exception handler is checked for an appropriate "catch” clause, and so on until an exception handler
with an appropriate "catch” is found.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 43

(CMode) LA/LATEXT and NLA/NLATEXT

#183. Do not use LA(i) or LATEXT(i) in the action routines of #token

To refer to the token code (in a#token action) of the token just recognized use NLA. NLA isan Ivalue (can appear
on the left hand side of an assignment statement). To refer to the text just recognized use zzlextext (the entire text)
or NLATEXT. One can also use zzbegexpr/zzendexpr which refer to the last regular expression matched. The char
array pointed to by zzlextext may be larger than the string pointed to by zzbegexpr and zzendexpr because it
includes substrings accumulated through the use of zzmore().

#184. Care must be taken in using LA(i) and LATEXT(i) in interactive mode (ANTLR switch —gk)

In interactive mode ANTLR doesn't guarantee that it will fetch lookahead tokens until absolutely necessary. Itis
somewhat safer to refer to lookahead information in semantic predicates, but careis still required.

In this table the entries "prev" and "next" means that the item refers to the token which precedes (or follows) the
action which generated the output. For semantic predicate entries think of the following rule;

rule : <<senantic-predi cate>>? Next NextNext ;
For rule-action entries think of the following rule:

rule : Prev <<action>> Next NextNext;

k=1 k=1 k=3 k=3 k=3
standard infinite standard interactive infinite

LA(0) Next Next - - - - - -
LA(1) Next Next Next Next Next

zzl ext ext Next Next Next - - Next

ZZI NF_LA(0) Next Next

ZZI NF_LA(1) Next Next Next Next

for a rule action

LA(O) Prev Prev - - Prev - -

LA(1) Prev Prev Prev Next Prev
zzl ext ext Prev Prev Prev -- Prev
ZZI NF_LA(0) Prev Prev
ZZI NF_LA(1) Next Next

(C Mode) Execution-Time Routines

#185. Callsto zzskip() and zzmore() should appear only in #token actions (or in subroutines they call)
#186. Use ANTLRS or ANTLRf in line-oriented languages to control the prefetching of characters and tokens

Write your own input routine and then use ANTLRS (input supplied by string) or ANTLRf (input supplied by function)
rather than plain ANTLR which is used in most of the examples.

#187. Saving and restoring parser state in order to parse other objects (input files)

Suppose one wants to parse files that "include" other files. The codein ANTLR (antlr.g) for handling #tokdefs
statements demonstrates how this may be done;

granmar: ...
| "#tokdefs" QuotedTerm
<<{
zzantlr_state st; /* defined in antlr.h */
struct zzdlg_state dst; /* defined in dlgdef.h */
FI LE *f;

User TokenDef sFil e = nystrdup(LATEXT(1));
zzsave_antlr_state(&st);
zzsave_dl g_state(&dst);

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 44

f = fopen(StripQuotes(LATEXT(1)),"r");
if (f==NULL)
warn(eMsgl("cannot open token defs file '%'",
LATEXT(1)+1));}
el se {
ANTLRM enum file(), f, PARSE_ENUM FI LE);
User Def dTokens = 1;
}
zzrestore_antlr_state(&st);
zzrestore_dl g_state(&dst);
}>>
The code uses zzsave_antlr_state() and zzsave dig_state() to save the state of the current parse. The ANTLRM macro
specifiesa starting rule for ANTLR of "enum_file" and starts DLG in the PARSE_ENUM_FILE state rather than the
default state (which is the current state — whatever it might be). Because enum_file() is called without any
arguments it appears that enum_file() does not use ASTs nor pass back any attributes. Contributed by TJP.

(C Mode) Attributes

#188. Use symbolic tags (rather than numbers) to refer to attributes and ASTsin rules

prior to version 1.30: rule : XY <<printf("% %", $1, $2);>> ;
sinc version 1.30: rule @ xx: X yy:Y <<printf("% 9%", $xx, $yy);>> ;
#189. Rulesno longer have attributes: rule : rl:rulel <<...$rl...;>>won'twork

Actualy this still works if one restricts oneself to C mode and uses numeric labels like $1 and $2. However
numeric labels are a deprecated feature, can't be used in C++ mode, and can't be used in the same source file as
symbolic labels, soit's best to avoid them.

#190. Attributes are built automatically only for terminals
To construct attributes under any other circumstances one must use $[TokenCode, . . .] or zzcr_attr().
#191. How to access the text or token part of an attribute
The way to access the text, token, (or whatever) part of an attribute depends on the way the attribute is stored. If one
uses the PccTs supplied routine "pccts/h/charbuf.h” then:
id: "[a-z]+" <<printf("Token is 9%\n", $1l.text);>> ;
If one uses the PcCTs supplied routine " pccts/h/charptr.c” and " pccts/h/charptr.h” then:
id: "[a-z]+" <<printf("Token is ¥%\n", $1);>> ;
If one uses the pccTs supplied routine "pects/h/int.h" (which stores numbers only) then:
nunber : "[0-9]+" <<printf ("Token is %\n", $1);>> ;
(Note the use of "%d" rather than "%s" in the printf() format).
#192. The $0 and $$ constructs are no longer supported — use inheritance instead (Item #113)
#193. If you use attributes then define a zzd_attr() to release resources (memory) when an attribute is destroyed
#194. Don't pass automatically constructed attributes to an outer rule or sibling rule — they’ll be out of scope

The pcCTs generated variables which contain automatically generated attributes go out of scope at the end of the
rule or sub-rule that contains them. Of course you can copy the attribute to a variable that won’t go out of scope. If
the attribute contains a pointer which is copied (e.g. pccts/h/charptr.c) then extra caution is required because of the
actions of zzd_attr(). See ltem #195.

#195. A charptr.c attribute must be copied before being passed to a calling rule

The pects/h/charptr.c routines use a pointer to astring. The string itself will go out of scope when the rule or sub-
ruleisexited. Why ? The string is copied to the heap when ANTLR calls the routine zzcr_attr() supplied by charptr.c
— however ANTLR also calls the charptr.c supplied routine zzd_attr() (which frees the allocated string) as soon as
therule or sub-rule exits. Theresult isthat in order to pass charptr.c strings to outer rules viainheritanceit is
necessary to make an independent copy of the string (using strdup for example) or else by zeroing the original
pointer to prevent its deallocation.

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 45

#196. Attributes created in arule should be assumed not valid on entry to afail action

#197.

#198.

#199.

Fail action are"... executed after a syntax error is detected but before a message is printed and the attributes have
been destroyed. However, attributes are not valid here because one does not know at what point the error occurred
and which attributes even exist. Fail actions are often useful for cleaning up data structures or freeing memory."
(Page 29 of 1.00 manual)

Example of afail action:
a . <<List *p=NULL;>>
(v:Var <<append(p, $v);>>)+
<<operateOn(p);rmist(p);>>
, <<rmist(p);>>
ANNNANANNANNNNNNN <--- Fail Action

Use afail action to destroy temporary attributes when arulefails

If you construct temporary, local, attributes in the middle of the recognition of arule, remember to deallocate the
structure should the rule fail. The code for failure goes after the ;" and before the next rule. For thisreasonit is
sometimes desirable to defer some processing until the ruleis recognized rather than the most convenient place:

#i ncl ude "pccts/h/charptr.h”

; statement!
<<char *| abel =0; >>
{nanme: | D COLON <<I| abel =Myst rdup($nane); >> }
s:statement _wi t hout | abel
<<#0=#(#[T_statenent, | abel], #s);
if (label!=0) free(label);
>>

;<<if (label !=0) free(label);>>

In the above exampl e attributes are handled by charptr.* (see the warning, Item #195). The call to MY strdup() is
necessary because $name will go out of scope at the end of the subrule "{ name:ID COLON}". The routine written
to construct ASTs from attributes (invoked by #[i nt, char *]) knows about this behavior and always makes a
copy of the character string when it constructs the AST. This makes the copy created by the explicit call to
MyStrdup redundant once the AST has been constructed. If the call to "statement_without_label" fails then the
temporary copy must be deallocated.

When you need more information for a token than just token type, text, and line number

Passing accurate column information along with the token in C mode when using syntactic predicates requires
workarounds. P.A. Keller (keller@ebi.ac.uk) has worked around this limitation of C mode by passing the address of
a user-defined struct (rendered as text using format codes "%p" or "%x") along with (or instead) of the token's
actual text. Thisrequires changesin syntax error routines and other places where the token text might be displayed.

About the pipeline between DLG and ANTLR (C mode)

I find it helpful to think of lexical processing by DLG as a process which fills a pipeline and of ANTLR as a process
which empties a pipeline. (This relationship is exposed in C++ mode because of the ANTLRTokenBuffer class).

With LL_K=1 the pipelineis only oneitem deep, trivial, and invisible. It isinvisible because one can make a
decision in ANTLR to change the DLG #lexclass with zzmode() and have the next token (the one following the one
just parsed by ANTLR) parsed according to the new #lexclass.

With LL_K>1 the pipelineis not invisible. bLG will put anumber of tokens into the pipeline and ANTLR will
analyze them in the same order. How many tokens are in the pipeline depends on options one has chosen.

Case 1: Infinite lookahead mode ("(. . .) ?"). The pipeline is as huge as the input since the entire input is
tokenized by DLG before ANTLR even begins analysis.

Case 2: Demand lookahead (interactive mode). Thereis avarying amount of lookahead depending on how much
ANTLR thinks it needs to predict which rule to execute next. This may be zero tokens (or maybe it’s one token)

up to k tokens. Naturally, it takes extrawork by ANTLR to keep track of how many tokens are in the pipe and how
many are needed to parse the next rule.

Case 3: Normal mode. DLG stays exactly k tokens ahead of ANTLR. Thisisahalf-truth. It roundsk up to the next
power of 2 so that with k=3 it actually has a pipeline of 4 tokens. If one says"-k 3" the analysisis still k=3, but

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 46

the pipeline size is rounded up because TJP decided it was faster to use a bit-wise "and" to compute the next
position in acircular buffer rather than (n+1) mod k.

(CMode) ASTs

#200. Define azzd_ast() to recover resources when an AST is del eted
#201. How to place prototypes for routines using ASTs in the #header

Add #include "ast.h" after the #define AST_FIELDS and before any referencesto AST:

#define AST_FIELDS int token;char *text;

#i ncl ude "ast.h"

#defi ne zzcr_ast(ast, attr, tok, ast Text) \
create_ast(ast,attr,tok,text)

void create_ast (AST *ast,Attr *attr,int tok,char *text);

#202. To free an AST tree use zzfree_ast() to recursively descend the AST tree and free all sub-trees

The user should supply aroutine zzd ast() to free any resources used by a single node — such as pointersto
character strings allocated on the heap.

#203. Use #define zzZAST_DOUBLE to add support for doubly linked ASTs

Thereisan option for doubly linked ASTsin the module ast.c. It is controlled by #define zzZAST _DOUBLE. Even
with zzZAST_DOUBLE only the right and down fields are filled while the AST tree is constructed. Oncethetreeis
constructed the user must call the routine zzdouble_link(tree,0,0) to traverse the tree and fill in the left and up fields.

Extended Examples and Short Descriptions of Distributed Source Code

Examples mentioned in these notes are available as .zip files at the sites mentioned in Item #1. In keeping with the
restrictionsin PCCTS, | have used neither templates nor multiple inheritance in these examples.

All these examples use AST classes which are derived from NoLeakAST. Some of them use tokens which are derived
from NoLeakToken. These classes maintain a doubly-linked list of all ASTs (or tokens) which have been created but not
yet deleted making it possible to recover memory for these objects.

#1.

#2.

#3.

#5.

DLG definitions for C and C++ comments, character literals, and string literals

See files in notes/cstuff/cstr.g (C mode) or notes/cstuff/cppstr.g (C++ mode). Contributed by John D. Mitchell
(johnm@j Guru.com).

A simple floating point calculator implemented using PCCTS attributes and inheritance

Thisisthe PCCTS equivalent of the approach used in the canonical yacc example. See notes/calctok/*.
A simple floating point calculator implemented using PcCTS ASTs and C++ virtual functions
Seefilesin notes/calcAST/*.

In this example an expression treeis built using ASTs. For each operator in the tree there is a different class derived
from AST with an operator specific implementation of the virtua function "eval()". Evauation of the expressionis
performed by calling eval () for the root node of the AST tree. Each node invokes eval() for its children nodes,
computes its own operation, and passed the result to its parent in a recursive manner.

An ANTLRTOKen class for variable length strings allocated from the heap

Thisisno longer useful since ANTLRCommonToken uses the heap.

How to extend pccTs C++ classes using the example of adding column information
Seefilesin notes/col/*

This demonstrates how to add column information to tokens and to produce syntax error messages using this
information. This example derives classes from ANTLRToken and ANTLRTokenBuffer.

Use of parser exception handling in C and C++ programs

For C see notes/exc/extestc.g and testl.dat
For C++ see notes/excpp/extestcpp.g and test1.dat

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 47

#7.

#10.

#11.

How to pass whitespace through DLG for pretty-printers
Seefilesin notes/ws/*

This demonstrates how to combine several separate DLG tokens (whitespace for this example) into asingle ANTLR
token. It also demonstrates careful processing of tab characters to generate accurate column information even
within comments or other constructs which use more().

How to prepend a newline to the DLGInputStream via derivation from DLGL exer
See files in notes/prependnl /*

This demonstrates how to derive from DLGLexer in order to replace a user-supplied DLGInputStream routine with
another which can perform additional processing on the input character stream before the characters are passed to
DLG. Inthiscaseasingle newlineis prepended to the input. Thisisdoneto makeit easier to treat the first non-
blank token on aline as a special case, even when it appears on the very first line of the input file.

How to maintain a stack of #lexclass modes
See files in notessfmodestack/*

Thisis based on routines written by David Seidel which allow the user to pass a a routine to be executed when the
mode is popped from the stack.

When you want to change the token type just before passing the token to the parser
See files in notes/predbuf/*

This program shows how to reassign token codes to tokens at the time they are fetched by the parser by deriving
from class ANTLRTokenBuffer and changing the behavior of getToken().

Rewriting a grammar to remove left recursion and perform left factoring

The original grammar:

command : = SET var BECOVES expr
| SET var BECOVES QUOTE QUOTE
| SET var BECOVES QUOTE expr QUOT
| SET var BECOVES QUOTE conmand QUOTE

expr : = QUOTE anyChar But Quot e QUOTE
| expr AddOp expr
| expr Mul Op expr
The repetition of "SET var BECOMES" for command would require k=4 to get to the interesting part. Thefirst step
isto left-factor "command":
comand : = SET var BECOVES
(expr
| QUOTE QUOTE
| QUOTE expr QUOTE
| QUOTE command QUOTE
)

The definition of expr uses left recursion which must be eliminated when using ANTLR:

op ;= AddOp
| Ml O
expr .= QUOTE anyChar But Quote QUOTE (op expr)*

Since expr begins with QUOTE and al the aternatives of the sub-rule of command also start with QUOTE. This
too can be left-factored:
command : = SET var BECOVES QUOTE
(expr_suffix
| QUOTE
| expr QUOTE
| command QUOTE

expr_suffix := anyCharBut Quote QUOTE (op expr)*
expr .= QUOTE expr_suffix

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 48

The final grammar can be built by ANTLR with k=2.

#t oken Q A

#t oken SVB "svb" /1 "SET var BECOVES"
#t oken Qbar "[a-z A-Z]*"

#t oken AddOp "\

#t oken Mul Op A

#t oken W5 "\ <<ski p(); >>

#t oken NL "\n" <<ski p();>>

repeat . (command)+ "@;

comand : SVB Q (expr_suffix

| expr Q
<<printf("null command\n");>>
| command Q <<printf("command\n");>>

expr_suffix : Qbar Q'<<printf("The Qar expr is (%)\n",$l.text); >>

{ op expr };
expr . Q expr_suffix;
op : AddOp | Ml Op

#12. Processing counted stringsin DLG

Sometimes literals are preceded by a count field.
3abc identifier 4defg
This example works by storing the count which precedes the string in alocal variable and then switching to a

#lexclass which accepts characters one at atime while decrementing a counter. When the counter reaches zero (or a
newline in this example) the DLG routine switches back to the usual #lexclass.

#| exaction <<static int count;>>

#t oken HOLLERI TH "[0-9]*"
<<count=atoi (I extext());
printf("Count is %l\n", count);

node(COUNT) ;
>>
#t oken Eof "@
#token I D "[a-z]*" <<printf("IDis %\n",lextext());>>
#t oken W5 "N <<skip();>>
#t oken NL "\'n"
#1 excl ass COUNT
#t oken STRI NG "~
<<count--;
if (count == 0)
node(START) ;
printf ("Hollerith string is \"%\"\n",lextext());
} elseif (ch =="\n")
node(START) ;
printf("Hollerith string % terninated by newine\n",
[extext());
} else {
nore() ;
>>
class P {
st at enent . ((HOLLERITH STRING | ID)* N+ "@;

See filesin notes/hollerith/*

27 March 2000 Release2.22 Notes for New Users of PCCTS Version 1.33MR22 49

#13.

#14.

#15.

#16.

How to convert afailed validation predicate into asignal for treatment by parser exception handling
See files notes/sim/*

This program intercepts afailed validation predicate in order to pass asignal back up the call tree. The example
includes code which takes the signal returned by the start rule and invokes the default handler

This exampleisnot as clean as | would like because of the difficulty of adding new behavior to a parser class.
How to use Vern Paxson’s flex with pccTs in C++ mode by inheritance from ANTLRTokenStream

Seefiles example.flex and flexLexer.* in notes/flex/*

Using the GNU gperf (generate perfect hashing function) with pccTs

Seefilesin notes/gperfex/*

The scanner generated by DLG can be very large. For grammars which contain alarge number of keywords it might
make sense to the use of the GNU program "gperf". The gperf programs attempts to generate a"minimal perfect
hash function” for testing whether an argument is among a fixed set of strings such as those used in the reserved
words of languages it has alarge number of options to specify space/time trade-offs and the style of the code
generated (e.g. C++ vs. C, case senditivity, arrays vs. case statements, etc.).

Asatest | found that agrammar with 25 keywords caused DLG to generate afile bLGLexer.cpp with 22,000
characters. Changing the lexical analysis code to use gperf resulted in afile DLGLexer.cpp that was 2,800
characters. The file generated by gperf was about 3,000 characters.

The gperf program was originally written by Douglas C. Schmidt. It is based on an algorithm developed by Keith
Bostic. The gperf program is covered by the GNU General Public License. | do not know what restrictions there are
on the output of gperf. The source code can be found in comp.sources.unix, volume 20.

Among the many FTP sites with comp.sources.unix here are two:

ftp.cis.ohio-state.edu/pub/comp.sources.unix/V olume20/gperf
ftp.informatik.tu-muenchen.de/pub/comp/usenet/comp.sources.unix/gperf

Multiple files managed as a single token stream
See files in notes/nested/*
This example manages afile which may have an #include statement as a single stream of tokens.

	Title Page
	Contents
	Where is
	Basics
	Checklist
	#token
	#tokclass
	#tokdef
	#lexclass
	Lexical Lookahead
	Line and Column Information
	Ambiguity Aid
	C++ Mode
	ASTs
	Rules
	Init-Actions
	Inheritance
	Syntactic Predicates
	Semantic Predicates
	Debugging Tips
	Switches and Options
	Multiple Source Files
	Source Code Format
	Miscellaneous
	Changes from 1.33
	(C Mode) LA/LATEXT and NLA/NLATEXT
	(C Mode) Execution-Time Routines
	(C Mode) Attributes
	(C Mode) ASTs
	Extended Examples

